LMdeploy量化部署LLM实践笔记+作业

本文介绍了如何在InternStudio开发机上创建并激活conda环境,安装lmdeploy,下载并验证internlm-chat-1.8b模型,以及通过命令行与模型进行对话的过程,使用了Transformer库和Huggingface社区的资源。
摘要由CSDN通过智能技术生成

1.LMDeploy环境部署

InternStudio开发机创建conda环境

studio-conda -t lmdeploy -o pytorch-2.1.2

接下来,激活刚刚创建的虚拟环境。

conda activate lmdeploy

安装0.3.0版本的lmdeploy。

pip install lmdeploy[all]==0.3.0

过程截图:

2.下载internlm-chat-1.8b模型

在InternStudio开发机上,可以按照如下步骤快速下载模型。

cd ~

然后执行如下指令由开发机的共享目录软链接拷贝模型:

ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b /root/
# cp -r /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b /root/

执行完如上指令后,可以运行“ls”命令。可以看到,当前目录下已经多了一个internlm2-chat-1_8b文件夹,即下载好的预训练模型。

ls

实战截图:

3.以命令方式与模型对话

导入Transformer库,Transformer库是Huggingface社区推出的用于运行HF模型的官方库。

回到终端,激活conda环境。

conda activate lmdeploy

运行python代码:

python /root/pipeline_transformer.py

实战截图:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值