1.LMDeploy环境部署
InternStudio开发机创建conda环境
studio-conda -t lmdeploy -o pytorch-2.1.2
接下来,激活刚刚创建的虚拟环境。
conda activate lmdeploy
安装0.3.0版本的lmdeploy。
pip install lmdeploy[all]==0.3.0
过程截图:
2.下载internlm-chat-1.8b模型
在InternStudio开发机上,可以按照如下步骤快速下载模型。
cd ~
然后执行如下指令由开发机的共享目录软链接或拷贝模型:
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b /root/ # cp -r /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b /root/
执行完如上指令后,可以运行“ls”命令。可以看到,当前目录下已经多了一个internlm2-chat-1_8b
文件夹,即下载好的预训练模型。
ls
实战截图:
3.以命令方式与模型对话
导入Transformer库,Transformer库是Huggingface社区推出的用于运行HF模型的官方库。
回到终端,激活conda环境。
conda activate lmdeploy
运行python代码:
python /root/pipeline_transformer.py
实战截图: