目录
1.线程库
1.1thread类的简单介绍
在C++11之前,涉及到多线程问题,都是和平台相关的,比如windows和linux下各有自己的接口,这使得代码的可移植性比较差。C++11中最重要的特性就是对线程进行支持了,使得C++在并行编程时不需要依赖第三方库。而且在原子操作中还引入了原子类的概念。要使用标准库中的线程,必须包含< thread >头文件。
函数名 功能 thread() 构造一个线程对象,没有关联任何线程函数,即没有启动任何线程 thread(fn,
args1, args2,
...)构造一个线程对象,并关联线程函数fn,args1,args2,...为线程函数的
参数get_id() 获取线程id jionable() 线程是否还在执行,joinable代表的是一个正在执行中的线程。 jion() 该函数调用后会阻塞住线程,当该线程结束后,主线程继续执行 detach() 在创建线程对象后马上调用,用于把被创建线程与线程对象分离开,分离
的线程变为后台线程,创建的线程的"死活"就与主线程无关C++的线程库是面向对象的,支持直接构造一个线程对象。像thread接口,是支持可变参数的,相较于Linux下的原生接口是方便很多的。C++11出于安全性的考虑,是不支持线程间的拷贝的。
为了解决线程对象不能拷贝的问题,C++11引入了移动语义。移动语义允许对象通过“窃取”另一个对象的资源来初始化自己,而不是通过拷贝。这样,资源的管理权就从源对象转移到了目标对象,而源对象则变为一个空壳或处于无效状态。
注意:
1. 线程是操作系统中的一个概念,线程对象可以关联一个线程,用来控制线程以及获取线程的状态。
2. 当创建一个线程对象后,没有提供线程函数,该对象实际没有对应任何线程。
#include <thread> int main() { std::thread t1; cout << t1.get_id() << endl; return 0; }
get_id()的返回值类型为id类型,id类型实际为std::thread命名空间下封装的一个类,该类中
包含了一个结构体:// vs下查看 typedef struct { /* thread identifier for Win32 */ void* _Hnd; /* Win32 HANDLE */ unsigned int _Id; } _Thrd_imp_t;
调用方法:
cout << this_thread::get_id() << endl;
3. 当创建一个线程对象后,并且给线程关联线程函数,该线程就被启动,与主线程一起运行。线程函数一般情况下可按照以下三种方式提供:
- 函数指针
- lambda表达式
- 函数对象
#include <iostream> using namespace std; #include <thread> void ThreadFunc(int a) { cout << "Thread1->" << a << endl; cout << endl; } class TF { public: void operator()() { cout << "Thread3" << endl; cout << endl; } }; int main() { // 线程函数为函数指针 thread t1(ThreadFunc, 10); // 线程函数为lambda表达式 thread t2([] {cout << "Thread2" << endl; cout << endl; }); // 线程函数为函数对象 TF tf; thread t3(tf); t1.join(); t2.join(); t3.join(); cout << "Main thread!" << endl; return 0; }
5.可以通过jionable()函数判断线程是否是有效的,如果是以下任意情况,则线程无效
- 采用无参构造函数构造的线程对象
- 线程对象的状态已经转移给其他线程对象
- 线程已经调用jion或者detach结束
面试题:并发与并行的区别?
并发:多个线程或进程实际上是通过时间片轮转的方式来交替执行的。每个任务在获得CPU时间片时执行一段时间,然后被挂起,让出CPU给其他任务执行,如此循环往复。这种方式在宏观上看起来像是多个任务在同时执行,但实际上在微观上它们是顺序执行的。并行:并行则是指多个任务同时执行的能力,每个任务都在独立的处理单元(如CPU核心)上执行。并行处理可以显著提高计算效率,因为多个任务可以同时进行,互不干扰。在多核处理器上,每个核心都可以独立地执行一个线程或进程,从而实现真正的并行处理。
1.2 线程函数参数
线程函数的参数是以值拷贝的方式拷贝到线程栈空间中的,因此:即使线程参数为引用类型,在线程中修改后也不能修改外部实参,因为其实际引用的是线程栈中的拷贝,而不是外部实参。
#include<iostream> #include <thread> using namespace std; void ThreadFunc1(int& x) { x += 10; } void ThreadFunc2(int* x) { *x += 10; } int main() { int a = 10; // 在线程函数中对a修改,不会影响外部实参,因为:线程函数参数虽然是引用方式,但其实际 //引用的是线程栈中的拷贝 thread t1(ThreadFunc1, a); t1.join(); cout << a << endl; // 如果想要通过形参改变外部实参时,必须借助std::ref()函数 thread t2(ThreadFunc1, std::ref(a)); t2.join(); cout << a << endl; // 地址的拷贝 thread t3(ThreadFunc2, &a); t3.join(); cout << a << endl; return 0; }
注意:如果是类成员函数作为线程参数时,必须将this作为线程函数参数。
1.3原子性操作库
多线程最主要的问题是共享数据带来的问题(即线程安全)。如果共享数据都是只读的,那么没问、题,因为只读操作不会影响到数据,更不会涉及对数据的修改,所以所有线程都会获得同样的数据。但是,当一个或多个线程要修改共享数据时,就会产生很多潜在的麻烦。比如:
#include <iostream> using namespace std; #include <thread> unsigned long sum = 0L; void fun(size_t num) { for (size_t i = 0; i < num; ++i) sum++; } int main() { cout << "Before joining,sum = " << sum << std::endl; thread t1(fun, 10000000); thread t2(fun, 10000000); t1.join(); t2.join(); cout << "After joining,sum = " << sum << std::endl; return 0; }
在
fun
函数中,两个线程(t1
和t2
)都试图修改全局变量sum
。由于这两个线程是并行执行的,它们对sum
的修改可能会相互干扰,导致最终的结果不确定。这就是所谓的竞态条件。由于竞态条件,sum
的最终值可能并不是两个线程各自循环次数的总和(即 20000000)。因为当一个线程在增加sum
的值时,另一个线程可能也在同时尝试做同样的事情,这可能导致某些增加操作被覆盖或遗漏。C++98中传统的解决方式:可以对共享修改的数据可以加锁保护
#include <iostream> using namespace std; #include <thread> #include <mutex> std::mutex m; unsigned long sum = 0L; void fun(size_t num) { for (size_t i = 0; i < num; ++i) { m.lock(); sum++; m.unlock(); } } int main() { cout << "Before joining,sum = " << sum << std::endl; thread t1(fun, 10000000); thread t2(fun, 10000000); t1.join(); t2.join(); cout << "After joining,sum = " << sum << std::endl; return 0; }
虽然加锁可以解决,但是加锁有一个缺陷就是:只要一个线程在对sum++时,其他线程就会被阻塞,会影响程序运行的效率,而且锁如果控制不好,还容易造成死锁。
因此C++11中引入了原子操作。所谓原子操作:即不可被中断的一个或一系列操作,C++11引入的原子操作类型,使得线程间数据的同步变得非常高效。
注意:需要使用以上原子操作变量时,必须添加头文件
#include <iostream> using namespace std; #include <thread> #include <atomic> atomic_long sum{ 0 }; void fun(size_t num) { for (size_t i = 0; i < num; ++i) sum++; // 原子操作 } int main() { cout << "Before joining, sum = " << sum << std::endl; thread t1(fun, 1000000); thread t2(fun, 1000000); t1.join(); t2.join(); cout << "After joining, sum = " << sum << std::endl; return 0; }
在C++11中,程序员不需要对原子类型变量进行加锁解锁操作,线程能够对原子类型变量互斥的访问。
更为普遍的,程序员可以使用atomic类模板,定义出需要的任意原子类型。
atmoic<T> t; // 声明一个类型为T的原子类型变量t
注意:原子类型通常属于"资源型"数据,多个线程只能访问单个原子类型的拷贝,因此在C++11中,原子类型只能从其模板参数中进行构造,不允许原子类型进行拷贝构造、移动构造以及operator=等,为了防止意外,标准库已经将atmoic模板类中的拷贝构造、移动构造、赋值运算符重载默认删除掉了。
#include <atomic> int main() { atomic<int> a1(0); //atomic<int> a2(a1); // 编译失败 atomic<int> a2(0); //a2 = a1; // 编译失败 return 0; }
1.4lock_guard与unique_lock
在多线程环境下,如果想要保证某个变量的安全性,只要将其设置成对应的原子类型即可,即高效又不容易出现死锁问题。但是有些情况下,我们可能需要保证一段代码的安全性,那么就只能通过锁的方式来进行控制。
比如:一个线程对变量number进行加一100次,另外一个减一100次,每次操作加一或者减一之后,输出number的结果,要求:number最后的值为1
#include <thread> #include <mutex> int number = 0; mutex g_lock; int ThreadProc1() { for (int i = 0; i < 100; i++) { g_lock.lock(); ++number; cout << "thread 1 :" << number << endl; g_lock.unlock(); } return 0; } int ThreadProc2() { for (int i = 0; i < 100; i++) { g_lock.lock(); --number; cout << "thread 2 :" << number << endl; g_lock.unlock(); } return 0; } int main() { thread t1(ThreadProc1); thread t2(ThreadProc2); t1.join(); t2.join(); cout << "number:" << number << endl; system("pause"); return 0; }
上述代码的缺陷:锁控制不好时,可能会造成死锁,最常见的比如在锁中间代码返回,或者在锁的范围内抛异常。因此:C++11采用RAII的方式对锁进行了封装,即lock_guard和unique_lock。
1.5mutex的种类
在C++11中,Mutex总共包了四个互斥量的种类:
1. std::mutex
C++11提供的最基本的互斥量,该类的对象之间不能拷贝,也不能进行移动。mutex最常用的三个函数:
函数名 函数功能 lock() 上锁:锁住互斥量 unlock() 解锁:释放对互斥量的所有权 try_lock() 尝试锁住互斥量,如果互斥量被其他线程占有,则当前线程也不会被阻
塞注意,线程函数调用lock()时,可能会发生以下三种情况:
- 如果该互斥量当前没有被锁住,则调用线程将该互斥量锁住,直到调用 unlock之前,该线程一直拥有该锁
- 如果当前互斥量被其他线程锁住,则当前的调用线程被阻塞住
- 如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)
线程函数调用try_lock()时,可能会发生以下三种情况:
- 如果当前互斥量没有被其他线程占有,则该线程锁住互斥量,直到该线程调用 unlock释放互斥量
- 如果当前互斥量被其他线程锁住,则当前调用线程返回 false,而并不会被阻塞掉
- 如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)
2. std::recursive_mutex
其允许同一个线程对互斥量多次上锁(即递归上锁),来获得对互斥量对象的多层所有权,释放互斥量时需要调用与该锁层次深度相同次数的 unlock(),除此之外,
std::recursive_mutex 的特性和 std::mutex 大致相同。3. std::timed_mutex
比 std::mutex 多了两个成员函数,try_lock_for(),try_lock_until() 。try_lock_for()
接受一个时间范围,表示在这一段时间范围之内线程如果没有获得锁则被阻塞住(与
std::mutex 的 try_lock() 不同,try_lock 如果被调用时没有获得锁则直接返回
false),如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超
时(即在指定时间内还是没有获得锁),则返回 false。
try_lock_until()
接受一个时间点作为参数,在指定时间点未到来之前线程如果没有获得锁则被阻塞住,
如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超时(即在指
定时间内还是没有获得锁),则返回 false。4. std::recursive_timed_mutex
5.lock_guard
std::lock_gurad 是 C++11 中定义的模板类。定义如下:
template<class _Mutex> class lock_guard { public: // 在构造lock_gard时,_Mtx还没有被上锁 explicit lock_guard(_Mutex& _Mtx) : _MyMutex(_Mtx) { _MyMutex.lock(); } // 在构造lock_gard时,_Mtx已经被上锁,此处不需要再上锁 lock_guard(_Mutex& _Mtx, adopt_lock_t) : _MyMutex(_Mtx) {} ~lock_guard() _NOEXCEPT { _MyMutex.unlock(); } lock_guard(const lock_guard&) = delete; lock_guard& operator=(const lock_guard&) = delete; private: _Mutex& _MyMutex; };
通过上述代码可以看到,lock_guard类模板主要是通过RAII的方式,对其管理的互斥量进行了封装,在需要加锁的地方,只需要用上述介绍的任意互斥体实例化一个lock_guard,调用构造函数成功上锁,出作用域前,lock_guard对象要被销毁,调用析构函数自动解锁,可以有效避免死锁
问题。#include<vector> #include<mutex> #include<atomic> #include<condition_variable> using namespace std; int main() { vector<thread> vthd; int n; cin >> n; vthd.resize(n); int x = 0; mutex mtx; auto func = [&](int n) { // 局部域 { lock_guard<mutex> lock(mtx); for (size_t i = 0; i < n; i++) { ++x; } } }; for (auto& thd : vthd) { // 移动赋值 thd = thread(func, 100000); } for (auto& thd : vthd) { thd.join(); } cout << x << endl; return 0; }
在上面的例子当中可以使用局部域的方式控制锁的范围。
lock_guard的缺陷:太单一,用户没有办法对该锁进行控制,因此C++11又提供了
unique_lock。6.unique_lock
unique_lock与lock_gard类似unique_lock类模板也是采用RAII的方式对锁进行了封装,并且也是以独占所有权的方式管理mutex对象的上锁和解锁操作,即其对象之间不能发生拷贝。在构造(或移动(move)赋值)时,unique_lock 对象需要传递一个 Mutex 对象作为它的参数,新创建的unique_lock 对象负责传入的 Mutex 对象的上锁和解锁操作。使用以上类型互斥量实例化unique_lock的对象时,自动调用构造函数上锁,unique_lock对象销毁时自动调用析构函数解锁,可以很方便的防止死锁问题。int n; std::mutex some_mutex; void prepare_data() { cout << n++ << endl; } void do_something() { cout << n++ << endl; } std::unique_lock<std::mutex> get_lock() { std::unique_lock<std::mutex> lk(some_mutex);//与lock_guard相同,构造时获取锁 cout << "owns_lock? " << lk.owns_lock() << endl;//1 prepare_data(); return lk; } int main() { //unique_lock基本使用 std::mutex mutex2; //告诉构造函数暂不获取锁 std::unique_lock<std::mutex> lock2(mutex2, std::defer_lock); cout << "owns_lock? " << lock2.owns_lock() << endl;//0 lock2.lock();//手动获取锁 std::cout << "owns_lock? " << lock2.owns_lock() << endl;//1 lock2.unlock();//手动解锁 cout << "owns_lock? " << lock2.owns_lock() << endl;//0 //锁所有权转移到函数外部 std::unique_lock<std::mutex> lk(get_lock());// do_something(); } //析构 //lock2未获取锁mutex2,因此不会调用unlock //lk对象持有锁some_mutex,调用unlock
与lock_guard不同的是,unique_lock更加的灵活,提供了更多的成员函数:
- 上锁/解锁操作:lock、try_lock、try_lock_for、try_lock_until和unlock。
- 修改操作:移动赋值、交换(swap:与另一个unique_lock对象互换所管理的互斥量所有权)、释放(release:返回它所管理的互斥量对象的指针,并释放所有权)。
- 获取属性:owns_lock(返回当前对象是否上了锁)、operator bool()(与owns_lock()的功能相同)、mutex(返回当前unique_lock所管理的互斥量的指针)。
1.6 支持两个线程交替打印,一个打印奇数,一个打印偶数(使用条件变量使线程同步)
condition_variable和Linux posix的条件变量并没有什么大的区别,主要还是面向对象实现的。
具体到这段代码,每个线程(
t1
和t2
)在访问共享资源(这里是flag
变量和输出操作)之前,都会通过unique_lock<mutex> lock(mtx);
来获取对互斥量mtx
的锁定。这确保了同一时间只有一个线程可以执行这些受保护的操作,从而避免了数据竞争和其他并发问题。每个
while
循环迭代中,线程会首先尝试获取互斥量,如果当前互斥量已经被另一个线程锁定,则当前线程会阻塞,直到互斥量被释放(即另一个线程完成了其受保护的操作并解锁了互斥量)。一旦线程成功获取了互斥量,它就会执行受保护的操作(检查flag
变量的值,打印信息,修改flag
变量等),并在unique_lock
对象的作用域结束时自动释放互斥量,允许其他线程继续执行。需要注意的是,这段代码在
main
函数中首先启动了线程t2
,然后让主线程休眠了 1000 毫秒(即 1 秒),之后才启动线程t1
。这种启动顺序和延时可能会导致一些不可预测的行为,因为线程t2
可能会在没有线程t1
的情况下运行多次循环迭代,直到flag
被设置为false
并等待t1
线程的通知。然而,由于t1
线程在t2
线程之后启动,所以t1
线程第一次尝试获取互斥量时,flag
可能已经是false
了(如果t2
线程在t1
启动前就已经执行了足够的迭代),这会导致t1
线程在第一次迭代时就执行打印操作,而不是像注释中提到的那样“第一个打印的是 t1 打印 0”。int main() { std::mutex mtx; condition_variable c; int n = 100; bool flag = true; thread t2([&]() { int j = 1; while (j < n) { unique_lock<mutex> lock(mtx); // 只要flag == true t2一直阻塞' // 只要flag == false t2不会阻塞 while (flag) c.wait(lock); cout<<"t2-> " << j << endl; j += 2; // 奇数 flag = true; c.notify_one(); } }); this_thread::sleep_for(std::chrono::milliseconds(1000)); // 第一个打印的是t1打印0 thread t1([&]() { int i = 0; while (i < n) { unique_lock<mutex> lock(mtx); // flag == false t1一直阻塞 // flag == true t1不会阻塞 while (!flag) { c.wait(lock); } cout <<"t1->" << i << endl; flag = false; i += 2; // 偶数 c.notify_one(); } }); t1.join(); t2.join(); return 0; }