从 0 到 1 实战 Boss 直聘爬虫:解锁春招数据背后的秘密

一、项目背景与价值

正值春招黄金期,Boss 直聘平台日均新增岗位超 10 万 +。本项目通过 Python 爬虫技术抓取 5000 + 岗位数据,结合数据分析与可视化技术,深度解析区域人才分布、技术栈需求、学历薪资关系等核心维度,为企业招聘策略制定与求职者职业规划提供数据支撑。

二、需求分析
  1. 各行政区岗位数量分布
  2. 提取技术关键词,生成词云
  3. 统计不同学历要求的占比
  4. 箱线图或直方图展示薪资分布
  5. 预测薪资或其他变量
  6. 不同地区和技术栈的需求热度
  7. 技术栈之间的共现关系
  8. 岗位要求词频趋势图
三、技术实现全流程

1. 数据采集系统构建

1.1、第一个方法:配置历览器配置、修改自己的useragent

1.2、第二个方法:创建数据库,连接数据库,创建表,添加字段

1.3、第三个方法:将数据插入数据库,添加一些try-expect增强代码健壮性

1.4、第四个方法:搜索url并定位岗位信息

遍历每个职位卡片,模仿点击

1.5、第五个方法:采集岗位信息并插入数据库

1.6、第六个方法:关闭浏览器,关闭数据库

1.7、创建实例

    • 运行代码完毕后会自动生成一个数据库

2.1、点开数据库图形界面,点开对应的boss_info表

2.2、将数据导出成为excel表

    • 清洗数据,拓宽表、

3.1、将公司规模标准化,提取岗位信息的技术栈、将岗位信息中的“小白”数据行值清除,拆分薪资列,新增行政区列、填充空值

    • 需求分析图形展示

4.1:各行政区岗位数量分布

拓展:公司规模和各行政区的分布情况

4.2:提取技术关键词,生成词云(词云图)

4.3:统计不同学历要求的占比(饼图)

4.4:箱线图或直方图展示薪资分布(箱型图)

4.5:预测薪资或其他变量

 

4.6:不同地区和技术栈的需求热度(热力图)

4.7:     技术栈之间的共现关系(网络图)

4.8岗位要求词频趋势图

    • 结论
  1. 区域人才分布特征
    • 核心区域聚集效应:天河区、越秀区等核心城区集中了约65%的岗位,平均薪资较其他区域高15-20%
    • 区域技术专精
      • 越秀区:偏重传统数仓技术(Hive, SQL)
      • 南沙区:新兴技术需求旺盛(Flink, Spark Streaming)
  2. 技术栈市场需求
    • 基础技术主导:SQL(92%岗位要求)、Hive(85%)为必备技能
    • 新兴技术溢价:掌握Flink薪资溢价达18%,Spark达12%
    • 黄金组合:"Hive+Spark+Flink"组合岗位平均薪资达35K,高于其他组合27%
  3. 学历与薪资关系
    • 学历门槛效应
      • 本科:薪资中位数22K,占比58%
      • 硕士:薪资中位数28K,溢价27%
      • 博士:薪资中位数42K,但岗位仅占3%
    • 学历边际效益:硕士相较本科薪资提升显著,但博士岗位稀缺性限制普及性
  4. 公司规模分析
    • 规模薪资正相关:超大型企业平均薪资较中型企业高32%
    • 技术栈差异
      • 大型企业:要求分布式技术(Hadoop, Spark)
      • 中小企业:侧重ETL工具(Kettle, DataStage)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值