机器人路径规划仿真软件:RRT (Rapidly-exploring Random Trees)_(11).RRT算法的仿真案例分析

RRT算法的仿真案例分析

在上一节中,我们介绍了RRT算法的基本概念和原理。本节将通过具体的仿真案例来分析RRT算法在机器人路径规划中的应用。我们将使用Python和一些常用的机器人路径规划库来实现和验证RRT算法。通过这些案例,您将能够更好地理解RRT算法的实际操作和效果。

在这里插入图片描述

案例1:二维环境中的RRT路径规划

1.1 环境设置

在二维环境中,我们将设置一个简单的矩形地图,并在地图中添加一些障碍物。我们使用matplotlib库来可视化地图和路径。


import matplotlib.pyplot as plt

import numpy as np



# 定义地图大小

width = 10

height = 10



# 定义障碍物

obstacles = [

    [(2, 2), (2, 4), (4, 4), (4, 2)],

    [(6, 6), (6, 8), (8, 8), (8, 6)]

]



# 绘制地图

def draw_map(obstacles):

    plt.figure(figsize=(width, height))

    plt.xlim(0, width)

    plt.ylim(0, height)

    plt.grid(True)

    

    # 绘制障碍物

    for obstacle in obstacles:

        obstacle.append(obstacle[0])  # 闭合路径

        xs, ys = zip(*obstacle)

        plt.fill(xs, ys, 'k')

    

    # 绘制起点和终点

    plt.plot(1, 1, "ro", markersize=10, label="Start")

    plt.plot(9, 9, "bo", markersize=10, label="Goal")

    plt.legend()

    plt.show()



draw_map(obstacles)

1.2 RRT算法实现

接下来,我们实现一个简单的RRT算法来规划机器人从起点到终点的路径。


import random

import math



class RRT:

    class Node:

        def __init__(self, x, y):

            self.x = x

            self.y = y

            self.parent = None



    def __init__(self, start, goal, obstacles, max_iter=1000, step_size=1):

        self.start = self.Node(start[0], start[1])

        self.goal = self.Node(goal[0], goal[1])

        self.obstacles = obstacles

        self.max_iter = max_iter

        self.step_size = step_size

        self.nodes = [self.start]



    def plan(self):

        for _ in range(self.max_iter):

            # 生成随机点

            rand_node = self.Node(random.uniform(0, width), random.uniform(0, height))

            

            # 找到最近的节点

            nearest_node = self.find_nearest_node(rand_node)

            

            # 生成新节点

            new_node = self.extend(nearest_node, rand_node)

            

            # 检查新节点是否与障碍物碰撞

            if not self.collision(new_node):

                self.nodes.append(new_node)

                

                # 检查是否到达目标

                if self.is_goal(new_node):

                    return self.generate_path(new_node)

        

        return None



    def find_nearest_node(self, rand_node):

        min_dist = float('inf')

        nearest_node = None

        

        for node in self.nodes:

            dist = math.sqrt((node.x - rand_node.x) ** 2 + (node.y - rand_node.y) ** 2)

            if dist < min_dist:

                min_dist = dist

                nearest_node = node

        

        return nearest_node



    def extend(self, nearest_node, rand_node):

        # 计算方向向量

        dx = rand_node.x - nearest_node.x

        dy = rand_node.y - nearest_node.y

        dist = math.sqrt(dx ** 2 + dy ** 2)

        

        # 生成新节点

        theta = math.atan2(dy, dx)

        x = nearest_node.x + self.step_size * math.cos(theta)

        y = nearest_node.y + self.step_size * math.sin(theta)

        

        new_node = self.Node(x, y)

        new_node.parent = nearest_node

        

        return new_node



    def collision(self, node):

        # 检查新节点是否与障碍物碰撞

        for obstacle in self.obstacles:

            if self.is_inside_obstacle(node, obstacle):

                return True

        return False



    def is_inside_obstacle(self, node, obstacle):

        # 检查节点是否在障碍物内部

        x, y = node.x, node.y

        x1, y1 = obstacle[0]

        x2, y2 = obstacle[2]

        

        return x1 <= x <= x2 and y1 <= y <= y2



    def is_goal(self, node):

        # 检查新节点是否到达目标点

        dist = math.sqrt((node.x - self.goal.x) ** 2 + (node.y - self.goal.y) ** 2)

        return dist < self.step_size



    def generate_path(self, goal_node):

        # 生成从起点到目标点的路径

        path = []

        node = goal_node

        while node is not None:

            path.append((node.x, node.y))

            node = node.parent

        return path[::-1]



# 起点和终点

start = (1, 1)

goal = (9, 9)



# 创建RRT对象

rrt = RRT(start, goal, obstacles, max_iter=1000, step_size=1)



# 规划路径

path = rrt.plan()



# 绘制路径

def draw_path(path):

    plt.figure(figsize=(width, height))

    plt.xlim(0, width)

    plt.ylim(0, height)

    plt.grid(True)

    

    # 绘制障碍物

    for obstacle in obstacles:

        obstacle.append(obstacle[0])  # 闭合路径

        xs, ys = zip(*obstacle)

        plt.fill(xs, ys, 'k')

    

    # 绘制起点和终点

    plt.plot(start[0], start[1], "ro", markersize=10, label="Start")

    plt.plot(goal[0], goal[1], "bo", markersize=10, label="Goal")

    

    # 绘制路径

    if path:

        xs, ys = zip(*path)

        plt.plot(xs, ys, "g-", linewidth=2, label="Path")

    

    plt.legend()

    plt.show()



draw_path(path)

1.3 案例分析

在这个案例中,我们设置了一个10x10的二维环境,并在其中添加了两个矩形障碍物。我们使用RRT算法从起点(1, 1)到终点(9, 9)进行路径规划。通过matplotlib库,我们可以直观地看到地图、障碍物以及规划出的路径。

RRT算法通过生成随机点并找到最近的节点,然后向随机点方向生成新节点。如果新节点没有与障碍物碰撞,就将其加入树中。这个过程重复进行,直到找到到达目标点的路径。通过调整max_iterstep_size参数,可以控制算法的搜索精度和效率。

案例2:三维环境中的RRT路径规划

2.1 环境设置

在三维环境中,我们将设置一个简单的立方体地图,并在地图中添加一些障碍物。我们使用matplotlib库的3D绘图功能来可视化地图和路径。


import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

import numpy as np



# 定义地图大小

width = 10

height = 10

depth = 10



# 定义障碍物

obstacles = [

    [(2, 2, 2), (2, 4, 2), (4, 4, 2), (4, 2, 2), (2, 2, 4), (2, 4, 4), (4, 4, 4), (4, 2, 4)],

    [(6, 6, 6), (6, 8, 6), (8, 8, 6), (8, 6, 6), (6, 6, 8), (6, 8, 8), (8, 8, 8), (8, 6, 8)]

]



# 绘制地图

def draw_map_3d(obstacles):

    fig = plt.figure(figsize=(width, height))

    ax = fig.add_subplot(111, projection='3d')

    ax.set_xlim(0, width)

    ax.set_ylim(0, height)

    ax.set_zlim(0, depth)

    ax.grid(True)

    

    # 绘制障碍物

    for obstacle in obstacles:

        obstacle.append(obstacle[0])  # 闭合路径

        xs, ys, zs = zip(*obstacle)

        ax.plot_trisurf(xs, ys, zs, color='k')

    

    # 绘制起点和终点

    ax.scatter(1, 1, 1, c='r', s=100, label="Start")

    ax.scatter(9, 9, 9, c='b', s=100, label="Goal")

    plt.legend()

    plt.show()



draw_map_3d(obstacles)

2.2 RRT算法实现

接下来,我们实现一个三维环境中的RRT算法来规划机器人从起点到终点的路径。


class RRT3D:

    class Node:

        def __init__(self, x, y, z):

            self.x = x

            self.y = y

            self.z = z

            self.parent = None



    def __init__(self, start, goal, obstacles, max_iter=1000, step_size=1):

        self.start = self.Node(start[0], start[1], start[2])

        self.goal = self.Node(goal[0], goal[1], goal[2])

        self.obstacles = obstacles

        self.max_iter = max_iter

        self.step_size = step_size

        self.nodes = [self.start]



    def plan(self):

        for _ in range(self.max_iter):

            # 生成随机点

            rand_node = self.Node(random.uniform(0, width), random.uniform(0, height), random.uniform(0, depth))

            

            # 找到最近的节点

            nearest_node = self.find_nearest_node(rand_node)

            

            # 生成新节点

            new_node = self.extend(nearest_node, rand_node)

            

            # 检查新节点是否与障碍物碰撞

            if not self.collision(new_node):

                self.nodes.append(new_node)

                

                # 检查是否到达目标

                if self.is_goal(new_node):

                    return self.generate_path(new_node)

        

        return None



    def find_nearest_node(self, rand_node):

        min_dist = float('inf')

        nearest_node = None

        

        for node in self.nodes:

            dist = math.sqrt((node.x - rand_node.x) ** 2 + (node.y - rand_node.y) ** 2 + (node.z - rand_node.z) ** 2)

            if dist < min_dist:

                min_dist = dist

                nearest_node = node

        

        return nearest_node



    def extend(self, nearest_node, rand_node):

        # 计算方向向量

        dx = rand_node.x - nearest_node.x

        dy = rand_node.y - nearest_node.y

        dz = rand_node.z - nearest_node.z

        dist = math.sqrt(dx ** 2 + dy ** 2 + dz ** 2)

        

        # 生成新节点

        theta_x = math.atan2(dy, dx)

        theta_y = math.atan2(dz, math.sqrt(dx ** 2 + dy ** 2))

        x = nearest_node.x + self.step_size * math.cos(theta_x) * math.cos(theta_y)

        y = nearest_node.y + self.step_size * math.sin(theta_x) * math.cos(theta_y)

        z = nearest_node.z + self.step_size * math.sin(theta_y)

        

        new_node = self.Node(x, y, z)

        new_node.parent = nearest_node

        

        return new_node



    def collision(self, node):

        # 检查新节点是否与障碍物碰撞

        for obstacle in self.obstacles:

            if self.is_inside_obstacle(node, obstacle):

                return True

        return False



    def is_inside_obstacle(self, node, obstacle):

        # 检查节点是否在障碍物内部

        x, y, z = node.x, node.y, node.z

        x1, y1, z1 = obstacle[0]

        x2, y2, z2 = obstacle[6]

        

        return x1 <= x <= x2 and y1 <= y <= y2 and z1 <= z <= z2



    def is_goal(self, node):

        # 检查新节点是否到达目标点

        dist = math.sqrt((node.x - self.goal.x) ** 2 + (node.y - self.goal.y) ** 2 + (node.z - self.goal.z) ** 2)

        return dist < self.step_size



    def generate_path(self, goal_node):

        # 生成从起点到目标点的路径

        path = []

        node = goal_node

        while node is not None:

            path.append((node.x, node.y, node.z))

            node = node.parent

        return path[::-1]



# 起点和终点

start_3d = (1, 1, 1)

goal_3d = (9, 9, 9)



# 创建RRT3D对象

rrt_3d = RRT3D(start_3d, goal_3d, obstacles, max_iter=1000, step_size=1)



# 规划路径

path_3d = rrt_3d.plan()



# 绘制路径

def draw_path_3d(path):

    fig = plt.figure(figsize=(width, height))

    ax = fig.add_subplot(111, projection='3d')

    ax.set_xlim(0, width)

    ax.set_ylim(0, height)

    ax.set_zlim(0, depth)

    ax.grid(True)

    

    # 绘制障碍物

    for obstacle in obstacles:

        obstacle.append(obstacle[0])  # 闭合路径

        xs, ys, zs = zip(*obstacle)

        ax.plot_trisurf(xs, ys, zs, color='k')

    

    # 绘制起点和终点

    ax.scatter(start_3d[0], start_3d[1], start_3d[2], c='r', s=100, label="Start")

    ax.scatter(goal_3d[0], goal_3d[1], goal_3d[2], c='b', s=100, label="Goal")

    

    # 绘制路径

    if path:

        xs, ys, zs = zip(*path)

        ax.plot(xs, ys, zs, "g-", linewidth=2, label="Path")

    

    plt.legend()

    plt.show()



draw_path_3d(path_3d)

2.3 案例分析

在这个案例中,我们设置了一个10x10x10的三维环境,并在其中添加了两个立方体障碍物。我们使用RRT算法从起点(1, 1, 1)到终点(9, 9, 9)进行路径规划。通过matplotlib的3D绘图功能,我们可以直观地看到地图、障碍物以及规划出的路径。

RRT算法在三维环境中的实现与二维环境类似,主要区别在于节点表示和碰撞检测。我们同样通过生成随机点并找到最近的节点,然后向随机点方向生成新节点。如果新节点没有与障碍物碰撞,就将其加入树中。这个过程重复进行,直到找到到达目标点的路径。通过调整max_iterstep_size参数,可以控制算法的搜索精度和效率。

案例3:复杂环境中的RRT路径规划

3.1 环境设置

在复杂环境中,我们将设置一个包含多个障碍物的二维地图,并在地图中添加一些动态障碍物。我们使用matplotlib库来可视化地图和路径。


import matplotlib.pyplot as plt

import numpy as np



# 定义地图大小

width = 10

height = 10



# 定义静态障碍物

static_obstacles = [

    [(2, 2), (2, 4), (4, 4), (4, 2)],

    [(6, 6), (6, 8), (8, 8), (8, 6)]

]



# 定义动态障碍物

dynamic_obstacles = [

    [(3, 3), (3, 5), (5, 5), (5, 3)],

    [(7, 3), (7, 5), (9, 5), (9, 3)]

]



# 绘制地图

def draw_map_with_dynamic_obstacles(static_obstacles, dynamic_obstacles):

    plt.figure(figsize=(width, height))

    plt.xlim(0, width)

    plt.ylim(0, height)

    plt.grid(True)

    

    # 绘制静态障碍物

    for obstacle in static_obstacles:

        obstacle.append(obstacle[0])  # 闭合路径

        xs, ys = zip(*obstacle)

        plt.fill(xs, ys, 'k')

    

    # 绘制动态障碍物

    for obstacle in dynamic_obstacles:

        obstacle.append(obstacle[0])  # 闭合路径

        xs, ys = zip(*obstacle)

        plt.fill(xs, ys, 'gray')

    

    # 绘制起点和终点

    plt.plot(1, 1, "ro", markersize=10, label="Start")

    plt.plot(9, 9, "bo", markersize=10, label="Goal")

    plt.legend()

    plt.show()



draw_map_with_dynamic_obstacles(static_obstacles, dynamic_obstacles)

3.2 RRT算法实现

接下来,我们实现一个包含动态障碍物的RRT算法来规划机器人从起点到终点的路径。我们将假设动态障碍物的位置是已知的,并在每次生成新节点时检查其与动态障碍物的碰撞。


class RRTWithDynamicObstacles:

    class Node:

        def __init__(self, x, y):

            self.x = x

            self.y = y

            self.parent = None



    def __init__(self, start, goal, static_obstacles, dynamic_obstacles, max_iter=1000, step_size=1):

        self.start = self.Node(start[0], start[1])

        self.goal = self.Node(goal[0], goal[1])

        self.static_obstacles = static_obstacles

        self.dynamic_obstacles = dynamic_obstacles

        self.max_iter = max_iter

        self.step_size = step_size

        self.nodes = [self.start]



    def plan(self):

        for _ in range(self.max_iter):

            # 生成随机点

            rand_node = self.Node(random.uniform(0, width), random.uniform(0, height))

            

            # 找到最近的节点

            nearest_node = self.find_nearest_node(rand_node)

            

            # 生成新节点

            new_node = self.extend(nearest_node, rand_node)

            

            # 检查新节点是否与静态障碍物或动态障碍物碰撞

            if not self.collision(new_node, self.static_obstacles) and not self.collision(new_node, self.dynamic_obstacles):

                self.nodes.append(new_node)

                

                # 检查是否到达目标

                if self.is_goal(new_node):

                    return self.generate_path(new_node)

        

        return None



    def find_nearest_node(self, rand_node):

        min_dist = float('inf')

        nearest_node = None

        

        for node in self.nodes:

            dist = math.sqrt((node.x - rand_node.x) ** 2 + (node.y - rand_node.y) ** 2)

            if dist < min_dist:

                min_dist = dist

                nearest_node = node

        

        return nearest_node



    def extend(self, nearest_node, rand_node):

        # 计算方向向量

        dx = rand_node.x - nearest_node.x

        dy = rand_node.y - nearest_node.y

        dist = math.sqrt(dx ** 2 + dy ** 2)

        

        # 生成新节点

        theta = math.atan2(dy, dx)

        x = nearest_node.x + self.step_size * math.cos(theta)

        y = nearest_node.y + self.step_size * math.sin(theta)

        

        new_node = self.Node(x, y)

        new_node.parent = nearest_node

        

        return new_node



    def collision(self, node, obstacles):

        # 检查新节点是否与障碍物碰撞

        for obstacle in obstacles:

            if self.is_inside_obstacle(node, obstacle):

                return True

        return False



    def is_inside_obstacle(self, node, obstacle):

        # 检查节点是否在障碍物内部

        x, y = node.x, node.y

        x1, y1 = obstacle[0]

        x2, y2 = obstacle[2]

        

        return x1 <= x <= x2 and y1 <= y <= y2



    def is_goal(self, node):

        # 检查新节点是否到达目标点

        dist = math.sqrt((node.x - self.goal.x) ** 2 + (node.y - self.goal.y) ** 2)

        return dist < self.step_size



    def generate_path(self, goal_node):

        # 生成从起点到目标点的路径

        path = []

        node = goal_node

        while node is not None:

            path.append((node.x, node.y))

            node = node.parent

        return path[::-1]



# 起点和终点

start = (1, 1)

goal = (9, 9)



# 创建RRTWithDynamicObstacles对象

rrt_with_dynamic_obstacles = RRTWithDynamicObstacles(start, goal, static_obstacles, dynamic_obstacles, max_iter=1000, step_size=1)



# 规划路径

path_with_dynamic_obstacles = rrt_with_dynamic_obstacles.plan()



# 绘制路径

def draw_path_with_dynamic_obstacles(path, static_obstacles, dynamic_obstacles):

    plt.figure(figsize=(width, height))

    plt.xlim(0, width)

    plt.ylim(0, height)

    plt.grid(True)

    

    # 绘制静态障碍物

    for obstacle in static_obstacles:

        obstacle.append(obstacle[0])  # 闭合路径

        xs, ys = zip(*obstacle)

        plt.fill(xs, ys, 'k')

    

    # 绘制动态障碍物

    for obstacle in dynamic_obstacles:

        obstacle.append(obstacle[0])  # 闭合路径

        xs, ys = zip(*obstacle)

        plt.fill(xs, ys, 'gray')

    

    # 绘制起点和终点

    plt.plot(start[0], start[1], "ro", markersize=10, label="Start")

    plt.plot(goal[0], goal[1], "bo", markersize=10, label="Goal")

    

    # 绘制路径

    if path:

        xs, ys = zip(*path)

        plt.plot(xs, ys, "g-", linewidth=2, label="Path")

    

    plt.legend()

    plt.show()



draw_path_with_dynamic_obstacles(path_with_dynamic_obstacles, static_obstacles, dynamic_obstacles)

3.3 案例分析

在这个案例中,我们设置了一个10x10的二维环境,并在其中添加了两个静态障碍物和两个动态障碍物。我们使用RRT算法从起点(1, 1)到终点(9, 9)进行路径规划。通过matplotlib库,我们可以直观地看到地图、静态障碍物、动态障碍物以及规划出的路径。

RRT算法在处理动态障碍物时,需要在每次生成新节点时检查其是否与动态障碍物碰撞。动态障碍物的位置是已知的,因此我们可以在每次迭代中更新其位置(如果需要)。在这个实现中,我们假设动态障碍物的位置是固定的,但可以通过调整算法来处理动态变化的障碍物。

通过调整max_iterstep_size参数,可以控制算法的搜索精度和效率。在这个复杂环境中,RRT算法依然能够有效地找到从起点到终点的路径,尽管路径可能需要绕过多个静态和动态障碍物。

总结

通过上述三个案例,我们可以看到RRT算法在不同环境中的应用和效果。二维环境中的RRT算法能够处理简单的矩形障碍物,而三维环境中的RRT算法则能够处理立方体障碍物。在复杂环境中,RRT算法通过动态障碍物的处理,展示了其灵活性和鲁棒性。

RRT算法的主要优点在于其能够处理高维和非线性环境,且在复杂环境中具有较高的搜索效率。然而,RRT算法也存在一些缺点,例如路径可能不是最优路径,且在某些情况下可能会陷入局部最优解。通过调整参数和改进算法,可以提高RRT算法的性能和效果。

希望这些案例能够帮助您更好地理解RRT算法在机器人路径规划中的应用。如果您有任何问题或需要进一步的帮助,请随时联系我。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kkchenjj

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值