密码学基本概念的学习

主要内容:

布尔函数,向量布尔函数(S盒),仿射函数,Walsh谱,非线性度,Bent函数,差分均匀度,汉明距离

小结:

布尔函数是n→1

向量布尔函数是n→m,向量布尔函数可以用m个布尔函数表示,这m个布尔函数称为向量布尔函数的分量函数

仿射函数属于布尔函数,是代数次数小于或等于1的布尔函数

非线性度可以用walsh谱定义,向量布尔函数的非线性度等于其分量函数的任意非零线性组合的非线性度的最小值

非线性度还可以用汉明距离定义,布尔函数的非线性度定义为函数f与所有仿射函数之间的最小汉明距离

Walsh谱可以用来衡量一个函数到仿射函数的汉明距离

Bent( 布尔 ) 函数、向量 Bent 函数、几乎 Bent 函数分别是特定条件下达到最高非线性度的函数

低差分函数主要包括完全非线性函数(PN) , 几乎完全非线性函数(APN)和差分均匀度为 4 的函数 ( 4 -uniform function, 4 - 差分函数 )

walsh谱值与汉明重量之间的关系

线性(化)函数与仿射函数之间的关系:A(x)=L(x)+c,迹函数是一种特殊的线性函数

(n,m)向量布尔函数是平衡的当且仅当每个分量函数是平衡的

具体文献:

Walsh谱可以衡量一个函数到仿射函数的距离,谱值的绝对值越大,函数越趋向一个仿射函数。

具体说明:使得(-1)的指数部分为0的x的个数设为N0,使得(-1)的指数部分为1的x的个数设为N1,那么上述谱值等于N0-N1。指数部分为0即f(x)+\sum_{x}x_{i}w_{i}=0,f(x)=\sum_{x}x_{i}w_{i},指数部分为1即f(x)+\sum_{x}x_{i}w_{i}=1,f(x)=\sum_{x}x_{i}w_{i}+1

\sum_{x}x_{i}w_{i}+c,c\in {0,1}是域上的仿射函数,N0越大(N1越小)说明有很多x使得f(x)=\sum_{x}x_{i}w_{i}成立,那么函数就越接近一个仿射函数\sum_{x}x_{i}w_{i};N1越大(N0越小)说明有很多x使得f(x)=\sum_{x}x_{i}w_{i}+1成立,那么函数就越接近一个仿射函数\sum_{x}x_{i}w_{i}+1。也就是说,N0-N1(即walsh谱值)的绝对值越大,函数就越接近一个仿射函数(线性度越高)

屈龙江,付绍静,李超.密码函数安全性指标的研究进展[J].密码学报,2014,1(06):578-588.

中国知网-登录 (知网原文链接)
摘要:密码函数包含布尔函数与向量函数(S-盒)两大类,是构成序列密码、分组密码和Hash函数这三类密码算法的重要组件,其密码学性质的好坏直接关系到密码算法的安全性.密码算法对于各种已知攻击的抵抗性可以由它所使用的密码函数的相应密码学指标来衡量,密码函数的差分均匀度反映了其抵抗差分攻击的能力,密码函数的非线性度反映了其抵抗线性攻击或快速相关攻击的能力,密码函数的代数免疫度反映了其抵抗代数攻击的能力,密码函数的相关免疫度反映了其抵抗相关攻击的能力,密码函数的代数次数反映其抵抗Berlekamp Massey攻击或高阶差分攻击的能力,其中非线性度、代数免疫度、差分均匀度是三个重要的密码学指标.本文总结了近年来在高度非线性函数、高代数免疫度函数和低差分函数研究方面的进展,重点归纳了Bent函数和向量Bent函数这两类高度非线性函数的性质与构造、具有最优代数免疫度且同时满足高非线性度等其它密码指标较优的布尔函数与向量函数构造、三类低差分函数(PN函数、APN函数和4-差分函数)的性质与构造三个方面的研究现状与进展情况,并对这三方面的下一步研究作了展望.

  

(n,m) 函数也称作向量布尔函数多输出布尔函数S盒

具有最大非线性度的 (n,m) 函数称为向量Bent函数,也称作 (n,m) Bent函数多输出Bent函数

Walsh谱公式中的·是内积的意思,两个向量的内积即对应分量相乘再相加(分量函数的线性组合)

李泽耀,卓泽朋.向量Bent函数的进一步研究[J].淮北师范大学学报(自然科学版),2023,44(03):1-5.中国知网-登录(原文链接)
摘要:向量Bent函数在密码学,编码理论和序列设计等领域应用广泛,是一个重要的研究课题。文章旨在通过对向量Bent函数的研究,得出新的向量Bent函数的构造方法。首先通过对Carlet给出的Bent函数的经典非直和构造的研究,将其推广到向量Bent函数上,并给出构造后函数的谱值公式。然后将布尔函数的级联构造方法推广到向量布尔函数上,通过研究函数间的谱值关系,给出级联4个函数得到的向量布尔函数为向量Bent函数的条件。最后得到3类向量Bent函数的二次构造。

汉明距离定义非线性度,在0处的谱值为0的布尔函数是平衡的(平衡:真值表的0、1个数相等)

 

李梦苒. 具有高非线性度的重量完美平衡布尔函数的构造[D].西安邮电大学,2024.DOI:10.27712/d.cnki.gxayd.2023.000074.

具有高非线性度的重量完美平衡布尔函数的构造 - 中国知网

 布尔函数的Walsh谱值与汉明距离之间的具体关系(Walsh谱可以用来衡量一个函数到仿射函数的汉明距离)

具体说明:

1.布尔函数f在α处的walsh谱值等于N0-N1

        使得walsh谱的指数部分(f+α·x)等于0的x的个数设为N0

        使得walsh谱的指数部分(f+α·x)等于1的x的个数设为N1

        那么布尔函数f在α处的walsh谱值就等于N0-N1

2.布尔函数(f+α·x)的汉明重量wt(f+α·x)等于N1

        一个布尔函数的汉明重量是使得这个函数等于1的x的个数

        布尔函数(f+α·x)的汉明重量为wt(f+α·x),那么wt(f+α·x)就是使得(f+α·x)等于1的x的个数,即前面设的N1

3.由N0+N1=2^n可得N0=2^n-N1

故N0-N1=2^n-2N1

再由前面两个结论,把N0-N1和N1代入即可

 多输出布尔函数的表达形式以及线性函数、仿射函数、迹函数

多输出布尔函数F(x):\mathbb{F}_2^n\rightarrow\mathbb{F}_2^m

1.分量表达:F(x_1,x_2,\ldots,x_n)=(f_1,f_2,\ldots,f_m),其中f_i是布尔函数

2.真值表表达:F(x)=[F(0),F(1),\ldots,F(2^n-1)],即代入定义域中的每一个数得到的函数值列表

3.多项式表达:当n=m时多输出布尔函数可以用次数不大于2^n-1的多项式表达,即

        F(x)=\sum_{i=0}^{2^n-1}c_ix^i,c_i\in \mathbb{F}_2

4.F(x)的次数以及代数次数

(1)F(x)的次数max\{ i|c_i\neq 0 \},即上述多项式表达中非零项对应的最大的指数i

(2)F(x)的代数次数max\{ wt(i)|c_i\neq 0 \},即上述多项式表达中非零项对应指数i的汉明重量的最大值

(3)举个例子,F(x)=x^7+x^4+x+1,这里面一共有4个非零项x^7,x^4,x以及x^0=1,对应的指数分别是7、4、1、0,因此该F(x)的次数是7;把这些指数写成2的幂次和的形式7=2^2+2^1+2^0,4=2^2,1=2^0,0=0能写成几个2的幂次相加就说明它对应的二进制形式里有几个1,那么这个指数i的汉明重量wt(i)就是几,例如7是三个2的幂次相加即7的汉明重量就为3,wt(7)=3,wt(4)=1,wt(1)=1,wt(0)=0,代数次数就是这些指数7、4、1、0的汉明重量中的最大值,即该F(x)的代数次数是3

(4)代数次数为1的多项式

可以想象,代数次数为1说明多项式(非零项)指数的汉明重量最大为1,那么多项式里的每一项要么其指数的代数次数为0(即常数0和1),要么其指数的代数次数为1(即只能写成一个2的幂次形式:2^i)。所以代数次数为1的多项式可以表达成\sum_{0}^{n-1}c_ix^{2^i}+c,其中c_i,c\in \mathbb{F}_2

5.仿射函数和线性函数

(1)仿射函数:代数次数为1的多项式,可以表达成A(x)=\sum_{0}^{n-1}c_ix^{2^i}+c

(2)线性(化)函数:L(x)=\sum_{0}^{n-1}c_ix^{2^i},是特殊的仿射函数(0映射到0),与仿射函数之间的关系A(x)=L(x)+c

(3)线性函数满足\forall a,b\in \mathbb{F}_{2^n},L(a+b)=L(a)+L(b)

6.迹函数:Tr(x)=\sum_{i=0}^{n-1}x^{2^{i}}

(1)迹函数是一种特殊的线性函数(即线性函数每一项的系数c_i都取1)

迹函数是\mathbb{F}_{2^n}\rightarrow \mathbb{F}_2的线性映射,即把域\mathbb{F}_{2^{n}}上的每一个数都映射到了域\mathbb{F}_2

(2)迹的性质

(源自【迹】一种从扩域到子域的映射,有很多有用的性质,特别是传递性_哔哩哔哩_bilibili

布尔函数仿射等价,一般线性群,仿射群

 

[1]曾骁.布尔函数仿射等价及其特性研究[D].电子科技大学,2023.DOI:10.27005/d.cnki.gdzku.2023.000303.
原文链接:https://kns.cnki.net/kcms2/article/abstract?v=KqXyGY4RJv0qM_yTX9_0JC3XlIf3K0_xyErLA4OsaN12gHronuVnFA6mrO3YR7rddllWaeBY-0r-au6beovQaqG19LIkB1s1Zrja_DSNSUjRt0l24PZfsrwqTzLnHJXK3k_5DRNyV9IDbEAnPbfHP7p2DIG74EWA-Fco84Lj9mv2gPbnSOvIfQ==&uniplatform=NZKPT

该篇论文里还有布尔函数密码学性质的介绍

(n,m)向量布尔函数是平衡的当且仅当每个分量函数是平衡的 

说明:(n,m)-函数F是平衡的当且仅当对于每一个y属于F_2^m,都有2^(n-m)个x与之对应

(n,m)-函数F的分量函数是指F的坐标函数的线性组合v·F

具体证明如下:

文献链接 https://link.springer.com/content/pdf/10.1007/3-540-60590-8_9.pdf

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值