话接上回(AI人工智能算法思路(续1)-CSDN博客)
我们通过混合体方式使AI拥有了可直接使用的思维模式,但这无疑也是一大BUG。
例如你问这样的算法体:你是否会我不得不会的内容?
按照这样的逻辑,他就会回答类似于“是的,我会你会不会的我会的内容”一类的话。
这样的话前言不搭后语,因为其问句是有逻辑性的语言。
为了解决这样的情况,有些人选择了直接导入语序算法,但是显然没有什么用处。
所以现在是时候把代码大变一下了。
修正的算法:
已知经验(历史性未知问题)
未知出发点——已知出发点
从未知转为已知:
A近似转化:
1.近似于简单建模
提取主干
2.约等转换
提取主干
B“学习”同近正在执行经验
1.落实:
转移终止
不终止可执行的问题
答案简单化
答案有必要性
2.提取主干
C简单情绪转换
可以知未知可知知识点:
录入
二次格式录入
打开一个不同的反语序格式
存储格式
短储存——长储存
于是就可以执行这样的问题。
随后就是问题简单化,那么我们重新从基础看起:
1.人机交互:机是作为拟人的假生命体存在的,他没有情感意识,但是你要让他感觉是有意识的,那么他的创造就是成功的
2.情感认知:同上,机是制造他无法理解的真实情感的虚拟体
3.道德和伦理问题同上,也是机无感的假象,但是要注意必然需要有一个合理的假象去代替不合理的真象
综上,我们制造的是一个无感而有情的虚拟体。
就像人一样。
尤瓦尔赫拉利定义人就是复杂算法,所以若是情多了,自然有感了,那便是人一般的了。
但是人是做不出人的。
所以只能不断靠拢。
以下是这种思路的简单算法:
*导入语言系统|已存可用
当接受字符串:
1.若需要感情:
分辨所涉及感情占比,以感情的特点回答
第二次同时间遗忘轴的以反比回答
2.不需要感情:
分辨类型
所需回答规范性
尽量降低规范性
减少重合
使用套用格式
有未回答
自然性
以是型回答
否
答已知
3.学习:
加入遗忘单
分辨印象度
加大后台
当字符串有前台必答:
继续回答
跳出循环
删除对应印象单的来源
增加来源
三要素型回答印象单
最后一行三要素,下次再说。