题目描述
每年,奶牛们都举办一种特殊的跳房子游戏,在这个游戏中,大家小心翼翼地在河中的
岩石上跳。这个游戏在一条笔直的河中进行,以一块岩石表示开始,以另一块距离起点L单位长度的岩石表示结束 (1 <= L <= 1,000,000,000)。在这两块岩石中间还有N
(0≤N≤50,000) 块岩石,每块的位置距离起点是 Di (0 < Di < L)个单位长度。
玩这个游戏的时候,每头牛从开始的那块岩石想办法要跳到表示结束的那块岩石上。中间只能在从某块岩石跳跃到另一块岩石,反复的这样跳。当然,不够敏捷的牛永远跳不到终点,最终只能落入河中。
农民 John 为他的牛感到自豪,每年都观看比赛。随着时间的推移,他对于那些胆小的只能跳过很短距离的牛感到厌烦。为了那些牛,其他农民会把岩石的间距弄得很小。他
计划移除一些岩石,从而增加奶牛在跳跃时需要的最短距离。他不能移除开始和结束的两块
岩石。但是除此之外他可以移除 M (0≤M≤N)块岩石。
FJ 希望知道他能够增加多少最短跳跃距离。求当他移除了M块岩石后,奶牛从开始跳到结束的岩石,每次跳跃的最短距离至多可以增加到多少。
输入
* 第1行: 三个用空格分开的整数,分别是 L, N, 和 M。
* 第2..N+1行: 每行一个整数,表示中间N块岩石的位置,没有两块岩石处于同一位置。
输出
* 第1行: 一个整数表示移除某M块岩石后,相邻岩石间距最小值的最大可能情况。
样例输入
25 5 2
2
14
11
21
17
样例输出
4
画画图就知道了
判断有me有距离大和小,大转移另一块,小去掉后一块,用二分接起来就好了。
(现在终于会用了)
#include <bits/stdc++.h>
#pragma GCC optimize("Ofast")
#define int long long
using namespace std;
int l,n,m,mid,bao,i,t,w,a[1000100];
bool pd(int jl) {
int ks=0,s=0,i;
for(i=1; i<=n+1; i++)
if(a[i]-ks>=jl)ks=a[i];
else s++;
return s<=m;
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
cin>>l>>n>>m;
for(i=1; i<=n; i++)cin>>a[i];
sort(a+1,a+1+n);
a[n+1]=l;
t=1;
w=l;
while(t<=w) {
mid=(t+w)/2;
if(pd(mid))bao=mid,t=mid+1;
else w=mid-1;
}
cout<<bao;
}