新的服务器跑网心云详细方案

本文将为您详细介绍如何注册网心云账号,并在此基础上新增注册雨云服务器的详细教程,帮助您快速上手并部署相关服务。


1. 注册网心云账号

1.1 访问网心云官网

  1. 打开浏览器,访问 网心云官网

  2. 点击“注册”按钮,填写邮箱、手机号及密码完成注册。

  3. 登录账号后,进入控制台获取 APP_ID 和 APP_SECRET,用于后续部署1。


2. 注册雨云服务器

2.1 访问雨云官网

  1. 打开浏览器,访问 雨云官网,我这个链接有5折优惠券

  2. 点击“注册”按钮,支持微信、QQ一键注册,或使用邮箱注册。

2.2 购买大带宽云服务器

  1. 进入“主页”,选择“云服务器”。

  2. 选择自己想要注册的地区及配置,这里也可以看到非常便宜

  3. 等待服务器创建完成。


3. 连接与配置雨云服务器

3.1 获取服务器信息

  1. 进入雨云控制台,找到已创建的服务器实例。

  2. 记录服务器的公网IP地址、SSH端口(默认22)、用户名(默认root)和密码。

3.2 使用SSH工具连接服务器

  1. 下载并安装SSH工具,如PuTTY(Windows)或FinalShell(跨平台)。

  2. 打开SSH工具,输入服务器IP地址和端口,点击连接。

  3. 输入用户名和密码,完成登录68。

3.3 安装必要软件

  1. 更新系统包:

    bash

    sudo apt-get update
  2. 安装Docker(用于部署网心云):

    bash

    sudo apt-get install -y docker.io
    sudo systemctl start docker
    sudo systemctl enable docker

4. 部署网心云服务

4.1 拉取网心云镜像

bash

sudo docker pull onethingcloud/onething-edge:latest

4.2 运行网心云容器

  1. 使用以下命令启动容器,替换 APP_ID 和 APP_SECRET 为网心云控制台获取的值:

    bash

    sudo docker run -d \
      --name onething-edge \
      --restart=always \
      --network=host \
      -e APP_ID=your_app_id \
      -e APP_SECRET=your_app_secret \
      onethingcloud/onething-edge:latest
  2. 使用 docker ps 检查容器是否正常运行1。


5. 优化与监控

5.1 资源监控

使用 htop 监控服务器资源:

bash

sudo apt-get install -y htop
htop

5.2 带宽优化

使用 iftop 监控网络流量:

bash

sudo apt-get install -y iftop
sudo iftop

5.3 定期维护

定期检查容器日志:

bash

sudo docker logs onething-edge

6. 常见问题与解决方案

6.1 容器无法启动

  • 问题:容器启动后立即停止。

  • 解决方案:检查 APP_ID 和 APP_SECRET 是否正确,确保网络连接正常1。

6.2 收益过低

  • 问题:收益远低于预期。

  • 解决方案:检查上行带宽是否被其他应用占用,确保服务器资源充足1。


通过以上步骤,您已成功注册网心云账号并部署雨云服务器。如果您在操作过程中遇到问题,欢迎在评论区留言讨论!

### 如何在云服务器上部署和运行PyTorch框架 #### 创建适合的环境 为了确保PyTorch能够在云服务器上顺利运行,首先需要创建一个合适的开发环境。一种推荐的方法是通过Docker来构建这个环境[^3]。这不仅简化了依赖项管理,还使得整个设置过程更加可移植。 对于基于Linux系统的云服务器而言,可以通过编写`.sh`脚本来自动化这一流程。此脚本应包含所有必要的命令用于拉取官方镜像并启动容器: ```bash #!/bin/bash sudo docker pull pytorch/pytorch:latest sudo docker run -it --name my-pytorch-env pytorch/pytorch bash ``` 上述代码片段展示了如何获取最新的PyTorch Docker镜像以及怎样以交互模式启动一个新的容器实例。 #### 修改SSH配置以便访问 当首次连接至新设立的服务时,默认情况下可能不允许root账户直接通过SSH登录。为了解决这个问题,需调整位于`/etc/ssh/sshd_config`路径下的SSH守护程序配置文件[^4]。具体来说就是找到关于PermitRootLogin的那一行,并将其值更改为yes或者without-password(取决于安全策略需求)。完成更改之后记得重启SSH服务使改动生效。 #### 安装特定版本的PyTorch及其依赖库 假设目标是在已有的Python环境中安装指定版本(比如1.7版)的PyTorch连同其配套组件如CUDA工具包,则可以采用如下conda指令实现这一点[^1]: ```shell conda install pytorch==1.7.0 torchvision cudatoolkit=10.2 -c pytorch ``` 这条命令会在当前活跃的Conda虚拟环境中精确地安装所需软件包组合。 #### 转换模型格式供其他平台使用 如果计划将由PyTorch训练得到的神经络应用于C++项目或其他非Python场景下,那么应该考虑先将原始.pth/.pt格式的模型导出成通用性强得多的ONNX形式[^2]。这样做能够极大地拓宽应用范围并且提高跨语言互操作性。 以下是简单的转换函数示例: ```python import torch.onnx from torchvision import models def convert_to_onnx(model_path, output_file="model.onnx"): dummy_input = torch.randn(1, 3, 224, 224) model = models.resnet50(pretrained=False) checkpoint = torch.load(model_path,map_location=torch.device('cpu')) model.load_state_dict(checkpoint['state_dict']) model.eval() torch.onnx.export( model, dummy_input, output_file, export_params=True, opset_version=10, do_constant_folding=True, input_names=['input'], output_names=['output'] ) ``` 这段Python代码接收预先存在的ResNet-50架构权重作为输入参数之一,并最终生成对应的ONNX描述文档保存于磁盘之上。 #### 加载预训练好的深度学习模型 最后,在实际业务逻辑中往往涉及到加载已经过充分训练完毕后的现成模型来进行预测工作。下面给出了一种典型做法——即从本地存储位置读入ResNet-50结构并准备就绪等待后续调用[^5]: ```python import torch.nn as nn from torchvision.models import resnet50 use_gpu = True global model model = resnet50(pretrained=True).cuda() if use_gpu else resnet50(pretrained=True) if isinstance(model, nn.DataParallel): model = model.module model.eval() ``` 以上步骤概括了一个完整的方案指导读者如何有效地把PyTorch集成到端计算资源当中去。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值