树状数组相关

与线段树相似,但是没有线段树扩展性好

树状数组的优点是实现较快

lowbit函数:表示二进制数最后一个1即后续0组成的数字(lowbit 101100 = 100)

int lowbit(int x)
{
    return x&(-x);
}

数据结构:

来自:https://blog.csdn.net/TheWayForDream/article/details/118436732

 用一个数组t[x]存储以x为根节点的点的sum

1,可以发现所有同深度的节点的lowbit值都相等

2,子节点 x 的父节点为:x + lowbit(x)

3,计算前x项(0 - x项)为

for(int i=x;i;i-=lowbit(i))
{
	sum+=t[i];
}

4,计算 i 到 j 只需要计算前 i - 1 项然后用前 j 项减去即可{ sum(j) - sum(i-1) }

5,加入或删除数值均只需要加减本位和所有父为即可

极简代码:(数组从1开始,0位赋值位0)

#include <bits/stdc++.h>

using namespace std;

int n;

int lowbit(int x)
{
    return x&(-x);
}

int func(int e,int *t)//计算 0 - e 项和
{
    int res = 0;
    for(int i = e;i;i -= lowbit(i))
    {
        res += t[i];
    }
    return res;
}

int sum(int i,int j,int *t)//计算 i 到 j 项和
{
    return func(j,t) - func(i-1,t);
}

void add_num(int e,int f,int *t)
{
    for(int i = e;i <= ::n;i += lowbit(i))
    {
        t[i] += f;
    }
}

int main()
{
    cin >> ::n;
    int t[999] = {};
    for(int i = 1;i <= ::n;++i)
    {
        int num;
        cin >> num;
        add_num(i,num,t);
    }
    cout << sum(1,4,t);
    return 0;
}
  • 32
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值