所谓完数就是该数恰好等于除自身外的因子之和。例如:6=1+2+3,其中1、2、3为6的因子。本题要求编写程序,找出任意两正整数m和n之间的所有完数。
输入格式:
输入在一行中给出2个正整数m和n(1<m≤n≤10000),中间以空格分隔。
输出格式:
逐行输出给定范围内每个完数的因子累加形式的分解式,每个完数占一行,格式为“完数 = 因子1 + 因子2 + ... + 因子k”,其中完数和因子均按递增顺序给出。若区间内没有完数,则输出“None”。
输入样例:
2 30
输出样例:
6 = 1 + 2 + 3
28 = 1 + 2 + 4 + 7 + 14
#include<stdio.h>
int main()
{
int m, n;
scanf("%d %d", &m, &n);
int i, j, sum, count = 0;
for (i = m; i <= n; i++)//从m到n,一个个确认是不是完数。
{
sum = 0;//每次循环的开始sum要归零。
for (j = 1; j < i; j++)
{
if (i % j == 0)
{
sum += j;
}
}
if (sum == i)//sum为所有因子的和。
{
printf("%d", i);
printf(" =");
for (j = 1; j < i; j++)//二次循环,只为输出格式。
{
if (i % j == 0)
{
printf(" %d",j);
if (j < (i / 2))//完数最大的因子不会大于它的一半。
{
printf(" +");
}
}
}
printf("\n");
count++;//确定区间内有没有完数。
}
}
if (count == 0)
{
printf("None");
}
return 0;
}
总结:
可以一步一步的完成整个题目,比如说这题,先找出完数,再想格式怎么写。
另外,应该可以用数组存放因子,这样会更简便。