NKOJ 核电站

核电站
时间限制 : 3000 MS   空间限制 : 65536 KB

问题描述

一个核电站有N个放核物质的坑,坑排列在一条直线上。 如果连续M个坑中放入核物质(注:并不是总共只有M个核物质),则会发生爆炸,于是,在某些坑中可能不放核物质。
任务:对于给定的N和M,求不发生爆炸的放置核物质的方案总数

输入格式

一行,两个正整数N,M( 1<N≤60,2≤M≤10)

输出格式

每组数据只输出一个正整数S,表示方案总数。

样例输入

4 3

样例输出

13

拿到这题要好好分析下,只要能写出递推公式代码就简单了。重点讲下思路,我们用f(x)来表示前x个坑不发生爆炸的方案总数。这题可以分为三种情况:
1、x<m时

当x<m时,说明无论怎么放都不会发生爆炸的情况,那么每个坑可以选择放或不放两张方案,那前x个坑共有f(x)=2^x种放法。也即f(x) = 2*f(x-1)  (这个公式看不明白别着急,待会把第三种情况的公式理解了,这个自然会理解)

2、x=m时,有一种情况不能放,那就是x个坑连在一起的情况,把这种排除即可,则有f(x)=2^x-1种放法。同样可以写成f(x) = 2*f(x-1)-1

3、x>m时,我们用f(x-1)表示前x-1个坑不会发生爆炸的方案总数。那么当到第x个坑时,有两种选择方法即放或者不放,因此放法共有2*f(x-1),但是这个方法包含了一种情况:如果在x个坑选择放了,那么爆炸了这种情况。因此要把这种情况减掉,这种情况数目为f(x-m-1),因此f(x) = 2*f(x-1)-f(x-m-1)。肯定有很多同学对f(x-m-1)这个不明白,下面我来讲解一下:

就拿题目给的n=4,m=3来举个例子:

当到第4个坑时,如果第四个坑选择放,发生爆炸了,那么情况肯定是这样的,2号坑放了,3号坑放了。那么必然1号坑没放。

那只要减掉1号不放这种情况,1号原来有两种选择(放或不放),原来的方案总数为2*f(0),现在明确了就是不放这种情况,那只有1*f(0)种方案,即为f(4-3-1)。     
————————————————
代码:

#include<iostream>
using namespace std;
long long n,m,a[60];
int main(){
	cin>>n>>m;
	a[0]=1;
	for(int i=1;i<m;i++){
		a[i]=a[i-1]*2;
		a[m]=a[m-1]*2-1;
	}
	for(int i=m+1;i<=n;i++){
		a[i]=a[i-1]*2-a[i-m-1];	
	}
	cout<<a[n];
}	
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值