[NOIP2014 提高组] 无线网络发射器选址

题目描述

随着智能手机的日益普及,人们对无线网的需求日益增大。某城市决定对城市内的公共场所覆盖无线网。

假设该城市的布局为由严格平行的 129129 条东西向街道和 129129 条南北向街道所形成的网格状,并且相邻的平行街道之间的距离都是恒定值 11。东西向街道从北到南依次编号为 0,1,2 \dots 1280,1,2…128,南北向街道从西到东依次编号为 0,1,2 \dots 1280,1,2…128。

东西向街道和南北向街道相交形成路口,规定编号为 xx 的南北向街道和编号为 yy 的东西向街道形成的路口的坐标是 (x, y)(x,y)。在某些路口存在一定数量的公共场所。

由于政府财政问题,只能安装一个大型无线网络发射器。该无线网络发射器的传播范围是一个以该点为中心,边长为 2d2d 的正方形。传播范围包括正方形边界。

现在政府有关部门准备安装一个传播参数为 dd 的无线网络发射器,希望你帮助他们在城市内找出合适的路口作为安装地点,使得覆盖的公共场所最多。

输入格式

第一行包含一个整数 dd,表示无线网络发射器的传播距离。

第二行包含一个整数 nn,表示有公共场所的路口数目。

接下来 nn 行,每行给出三个整数 x, y, kx,y,k,中间用一个空格隔开,分别代表路口的坐标 (x, y)(x,y) 以及该路口公共场所的数量。同一坐标只会给出一次。

输出格式

输出一行,包含两个整数,用一个空格隔开,分别表示能覆盖最多公共场所的安装地点方案数,以及能覆盖的最多公共场所的数量。

输入输出样例

输入 #1复制

1  
2  
4 4 10  
6 6 20  
 

输出 #1复制

1 30

说明/提示

对于100%的数据,1 \leq d \leq 20, 1 \leq n \leq 20, 0 \leq x \leq 128, 0 \leq y \leq 128, 0 < k \leq 10000001≤d≤20,1≤n≤20,0≤x≤128,0≤y≤128,0<k≤1000000

这道题可以采用很多种方法来快速算出一个矩阵的和,可以采用二维前缀和,递推公式即

f(x,y)=f(x-1,y)+a[x][y]\ \ \ y=1\ or\ y=mf(x,y)=f(x−1,y)+a[x][y]   y=1 or y=m

f(x,y)=f(x,y-1)+a[x][y]\ \ \ x=1\ or\ x=nf(x,y)=f(x,y−1)+a[x][y]   x=1 or x=n

f(x,y)=f(x-1,y)+f(x,y-1)-f(x-1,y-1)+a[x][y]\ \ \ x,y\neq 1\ and\ x\neq n\ and\ y\neq mf(x,y)=f(x−1,y)+f(x,y−1)−f(x−1,y−1)+a[x][y]   x,y=1 and x=n and y=m

然乎求矩阵(x1,y1,x2,y2)(x1,y1,x2,y2)的和差分一下即可,时间复杂度为O(n^2)O(n2)

而如果不用前缀和呢?我们如何快速的求出矩阵的和?

二维树状数组

时间复杂度略慢于前缀和,为O(n^2\ log^2n)O(n2 log2n)

我们来观察一下二维树状数组基本操作代码:

添加:

#define lowbit(x) (x&(-x))
void add(int x,int y,int k)
{
	for(int i=x;i<=n;i+=lowbit(i))
    {
    	for(int j=y;j<=m;j+=lowbit(j))
        {
        	c[i][j]+=k;
        }
    }
}

显然的,就是一维树状数组再纵向添加了一次,查询也类似

代码:

#include <bits/stdc++.h>
#define lowbit(x) (x&(-x))
using namespace std;
int c[130][130];
int ans=0,maxn=-0x3f3f3f3f;
void add(int x,int y,int k)
{
    for(int i=x;i<=129;i+=lowbit(i))
    {
        for(int j=y;j<=129;j+=lowbit(j))
        {
            c[i][j]+=k;
        }
    }
}
int query(int x,int y)
{
    int ans=0;
    for(int i=x;i>=1;i-=lowbit(i))
    {
        for(int j=y;j>=1;j-=lowbit(j))
        {
            ans+=c[i][j];
        }
    }
    return ans;
}
int main()
{
    int d,n;
    cin>>d>>n;
    for(int i=1;i<=n;i++)
    {
        int x,y,k;
        scanf("%d%d%d",&x,&y,&k);
        add(x+1,y+1,k);
    }
    for(int i=1;i<=129;i++)
    {
        for(int j=1;j<=129;j++)
        {
            int i1=i-d;
            if(i1<=0)
            {
                i1=1;
            }
            int i2=(i+d);
            if(i2>=130)
            {
                i2=129;
            } 
            int j1=(j-d);
            if(j1<=0)
            {
                j1=1;
            }
            int j2=(j+d);
            if(j2>=130)
            {
                j2=129;
            } 
            int ans1=query(i2,j2)-query(i2,j1-1)-query(i1-1,j2)+query(i1-1,j1-1);
            if(ans1>maxn)
            {
                ans=1;
                maxn=ans1;
            }
            else if(ans1==maxn)
            {
                ans++;
            }
        }
    }
    cout<<ans<<" "<<maxn;
}

倍增

既然没有修改,我们为何不采用倍增的方法来求出矩阵的值?

倍增通过每次向一个点往后跳2^j2j的方式快速获得区间答案,因为其查询复杂度为O(1)O(1)并且将所求矩阵二进制分解需要O(log^2n)O(log2n),故时间复杂度与二维树状数组类似,为O(n^2\ log^2n)O(n2 log2n)

a[i][j][k][p]a[i][j][k][p]代表矩阵(i,j)-(i+2^k,j)-(i,j+2^p)-(i+2^k,j+2^p)(i,j)−(i+2k,j)−(i,j+2p)−(i+2k,j+2p)的值,预处理时间复杂度也为O(n^2)O(n2),可以快速完成本题,这里就不发代码了。

后记:这道题虽然简单,但希望各位可以从简单的题目中探寻多种解决问题的方法,博主只是发掘了其冰山一角,只有平时更多的积累,才能在考场上胸有成竹

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值