[NOIP2012 普及组] 摆花

20 篇文章 0 订阅

题目描述

小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共 mm 盆。通过调查顾客的喜好,小明列出了顾客最喜欢的 nn 种花,从 11 到 nn 标号。为了在门口展出更多种花,规定第 ii 种花不能超过 a_iai​ 盆,摆花时同一种花放在一起,且不同种类的花需按标号的从小到大的顺序依次摆列。

试编程计算,一共有多少种不同的摆花方案。

输入格式

第一行包含两个正整数 nn 和 mm,中间用一个空格隔开。

第二行有 nn 个整数,每两个整数之间用一个空格隔开,依次表示 a_1,a_2, \cdots ,a_na1​,a2​,⋯,an​。

输出格式

一个整数,表示有多少种方案。注意:因为方案数可能很多,请输出方案数对 10^6+7106+7 取模的结果。

输入输出样例

输入 #1复制

2 4
3 2

输出 #1复制

2

说明/提示

【数据范围】

对于 20\%20% 数据,有 0<n \le 8,0<m \le 8,0 \le a_i \le 80<n≤8,0<m≤8,0≤ai​≤8。

对于 50\%50% 数据,有 0<n \le 20,0<m \le 20,0 \le a_i \le 200<n≤20,0<m≤20,0≤ai​≤20。

对于 100\%100% 数据,有 0<n \le 100,0<m \le 100,0 \le a_i \le 1000<n≤100,0<m≤100,0≤ai​≤100。

NOIP 2012 普及组 第三题

(〇)数学符号注释

本文中的某些符号体系并不标准,一些读者会在其他书中学习类似的内容。这里列出了他们可能不熟悉的符号。

符号名称等价形式
\sum\limits_{i=1}^na_ii=1∑n​ai​求和(和式)a_1+a_2+\cdots+a_{n-1}+a_na1​+a2​+⋯+an−1​+an​
\prod\limits_{i=1}^na_ii=1∏n​ai​求积a_1\times a_2\times\cdots\times a_{n-1}\times a_na1​×a2​×⋯×an−1​×an​
[m=n][m=n]如果m=nm=n值为11;否则为00\begin{cases}1&m=n\\ 0& m\not=n\end{cases}{10​m=nm=n​

(一)题目大意

简化一下题意:

有 nn 个数(c_1,c_2,...,c_nc1​,c2​,...,cn​), 0\leqslant c_i\leqslant a_i0⩽ci​⩽ai​,求有多少种方案数使\sum\limits_{i=1}^nc_i = mi=1∑n​ci​=m。

(二)解题思路

乍一看,似乎题目有些复杂,一时找不到思路,肿么办!!!

方法一:搜索

没有思路当然就搜索啦 废话。如何搜索呢?

从 1 到 nn​ 考虑每个 c_ici​​ 的值,和当前前 ii​ 个数的总和 kk​,然后枚举当前 x_ixi​​ 所有可能的值,再递归求解。

时间复杂度 O(\prod\limits_{i=1}^na_i)O(i=1∏n​ai​),明显超时,但可以拿部分分(30)嘛...

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=105, mod = 1000007;
int n, m, a[maxn];
int dfs(int x,int k)
{
    if(k > m) return 0;
    if(k == m) return 1;
    if(x == n+1) return 0;
    int ans = 0;
    for(int i=0; i<=a[x]; i++) ans = (ans + dfs(x+1, k+i))%mod;
    return ans;
}
int main()
{
    cin>>n>>m;
    for(int i=1; i<=n; i++) cin>>a[i];
    cout<<dfs(1,0)<<endl;
    return 0;
}

搜索超时怎么办!!! 别着急...

方法二(搜索优化法宝):记忆化

所谓记忆化,其实就是用一个数组将搜索过的值存起来,避免重复搜索,从而提高效率。(有必要可以上网搜一下,会搜索的应该很容易理解记忆化吧)

时间复杂度大概是:O(nma_i)O(nmai​) 吧,100%的数据稳过。

代码(其实只是改动了一点点):

#include<bits/stdc++.h>
using namespace std;
const int maxn=105, mod = 1000007;
int n, m, a[maxn], rmb[maxn][maxn];
int dfs(int x,int k)
{
    if(k > m) return 0;
    if(k == m) return 1;
    if(x == n+1) return 0;
    if(rmb[x][k]) return rmb[x][k]; //搜过了就返回
    int ans = 0;
    for(int i=0; i<=a[x]; i++) ans = (ans + dfs(x+1, k+i))%mod;
    rmb[x][k] = ans; //记录当前状态的结果
    return ans;
}
int main()
{
    cin>>n>>m;
    for(int i=1; i<=n; i++) cin>>a[i];
    cout<<dfs(1,0)<<endl;
    return 0;
}

但是搜索的时间有些不稳定,想要更稳定的算法有木有...

方法三:动态规划

记忆化搜索都可以转成动态规划,但是动态规划却不一定能转成记忆化搜索 ——byby clgclg

定义状态:f(i, j)f(i,j) 表示前 ii 个数总和为 jj 的方案数。

那么,易得状态转移方程:f(i, j) = \sum\limits_{k=0}^{a_{i}}f(i-1,j-k)f(i,j)=k=0∑ai​​f(i−1,j−k)

其中, kk是枚举当前第 ii 个数的取值。

时间复杂度:O(nma_i)O(nmai​),稳得一批。

空间复杂度:O(nm)O(nm)

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=105, mod = 1000007;
int n, m, a[maxn], f[maxn][maxn];
int main()
{
    cin>>n>>m;
    for(int i=1; i<=n; i++) cin>>a[i];
    f[0][0] = 1;
    for(int i=1; i<=n; i++)
       for(int j=0; j<=m; j++)
           for(int k=0; k<=min(j, a[i]); k++)
              f[i][j] = (f[i][j] + f[i-1][j-k])%mod;
    cout<<f[n][m]<<endl;
    return 0;
}

仔细观察上述代码,有木有发现什么...

方法四(dp优化法宝):滚动数组

因为我们发现,状态转移方程中,当前状态 f(i, j)f(i,j)只跟 f(i-1, j)f(i−1,j) 有关系,与 i-2,i-3...i−2,i−3...无关。于是,我们可以利用滚动数组优化dp。

所谓滚动数组,其实就是只保留两个状态(当前状态和前一个状态),算完当前状态后,将当前状态变为前一个状态,再去算下一个状态,看上去就像二维数组的两层不断地迭代

时间复杂度:O(nma_i)O(nmai​)

空间复杂度:O(m)O(m)

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=105, mod = 1000007;
int n, m, a[maxn], f[2][maxn], t;
int main()
{
    cin>>n>>m;
    for(int i=1; i<=n; i++) cin>>a[i];
    f[0][0] = 1;
    for(int i=1; i<=n; i++)
    {
        t = 1-t; //滚动
        for(int j=0; j<=m; j++)
        {
            f[t][j] = 0; //注意初始化
            for(int k=0; k<=min(j, a[i]); k++)
              f[t][j] = (f[t][j] + f[1-t][j-k])%mod;
        }
    }
    cout<<f[t][m]<<endl;
    return 0;
}

看到上述dp代码,有木有感觉很熟悉...

这熟悉的优化方法... 这TM不就是个背包吗!!!

方法五(背包大法好):一维动态规划

通过观察上面的代码,二维数组,数组滚动优化空间......还有那熟悉的格式...

猛然发现这怎么可能不是背包呢(01背包)?

既然是背包,那么就可以为所欲为啦... [邪恶.jpg]

直接压成一维的01背包,跑一波,搞掂!!!

时间复杂度:O(nma_i)O(nmai​)

空间复杂度:O(m)O(m)

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=105, mod = 1000007;
int n, m, a[maxn], f[maxn];
int main()
{
    cin>>n>>m;
    for(int i=1; i<=n; i++) cin>>a[i];
    f[0] = 1;
    for(int i=1; i<=n; i++)
        for(int j=m; j>=0; j--) //注意,是01背包
            for(int k=1; k<=min(a[i], j); k++)
              f[j] = (f[j] + f[j-k])%mod;
    cout<<f[m]<<endl;
    return 0;
}

方法六:前缀和优化

继续观察方法五的代码,时间复杂度是\Theta(n^3)Θ(n3)级别的。与背包有一些差别的是这一句:

for(int k=1; k<=min(a[i], j); k++)
    f[j] = (f[j] + f[j-k])%mod;

然而,这一句的作用只不过是将连续的一段f[j-a[i]]f[j−a[i]]到f[j-1]f[j−1]累加起来而已。因此,可以用前缀和将这个操作优化(众所周知,前缀和的作用就是\Theta(1)Θ(1)求一段区间的和)。

时间复杂度:\Theta(nm)Θ(nm)

顺便卡到了次优解。

#include<bits/stdc++.h>
using namespace std;
const int maxn = 105, mod = 1000007;
int n, m, f[maxn], sum[maxn], a[maxn];
int main(){
    cin>>n>>m;
    for(int i=1; i<=n; i++) cin>>a[i];
	f[0] = 1;
    for(int i=0; i<=m; i++) sum[i] = 1;
    for(int i=1; i<=n; i++){
    	for(int j=m; j>=1; j--) f[j] = (f[j] + sum[j-1] - sum[j - min(a[i], j) - 1] + mod)%mod;
		for(int j=1; j<=m; j++) sum[j] = (sum[j-1] + f[j])%mod;
	}
    cout<<f[m]<<endl;
    return 0;
}

提示:上面的程序在计算f[j]f[j]的时候有可能会出现数组越界的情况,但为了代码美观容易理解,没有特判。这一点需要注意,考场上不慎就会抱灵。

下面是加上了特判的代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn = 105, mod = 1000007;
int n, m, f[maxn], sum[maxn], a[maxn];
int main(){
    cin>>n>>m;
    for(int i=1; i<=n; i++) cin>>a[i];
	f[0] = 1;
    for(int i=0; i<=m; i++) sum[i] = 1;
    for(int i=1; i<=n; i++){
    	for(int j=m; j>=1; j--){
    		int t = j - min(a[i], j) - 1;
    		if(t < 0) f[j] = (f[j] + sum[j-1])%mod;
    		else f[j] = (f[j] + sum[j-1] - sum[t] + mod)%mod;
		}
		for(int j=1; j<=m; j++) sum[j] = (sum[j-1] + f[j])%mod;
	}
    cout<<f[m]<<endl;
    return 0;
}

方法七:生成函数

建议初学者跳过此方法,权当提供一种思路。

回到开头,我们需要求的是这样一个式子:

\sum\limits_{c_k=0}^{a_k}\left[\sum\limits_{i=1}^nc_i=m\right ] ,k=\{1,2,...,n-1,n\}ck​=0∑ak​​[i=1∑n​ci​=m],k={1,2,...,n−1,n}

于是我们可以构造这样一个生成函数:

g(x)=(1+x^1+x^2+\cdots+x^{a_1})(1+x^1+x^2+\cdots+x^{a_2})\cdots(1+x^1+x^2+\cdots+x^{a_n})g(x)=(1+x1+x2+⋯+xa1​)(1+x1+x2+⋯+xa2​)⋯(1+x1+x2+⋯+xan​)

即,

g(x)=\prod\limits_{i=1}^n\sum_{j=0}^{a_i}x^jg(x)=i=1∏n​j=0∑ai​​xj

7.1多项式

最后所得的多项式中,x^mxm 项的系数即为答案。可以做nn​次NTT得到答案。假设a_iai​ 的值域是kk ,那么,

时间复杂度:\Theta(n^2k\log nk)Θ(n2klognk)

实际上,mm最大可以取到nknk。因此如果用kk来表示,前缀和优化后的复杂度应当是:\Theta(n^2k)Θ(n2k)

NTT的局限在于要做nn次。其实只需要取\lnln就能将多项乘法转化为多项式加法,具体参考付公主的背包

时间复杂度降到了\Theta(nk\log nk)Θ(nklognk)​,即 \Theta(m\log m)Θ(mlogm)​

7.2封闭形式

也可以将其写成封闭形式,参考[CEOI2004] Sweets

等比数列求和,得到:

g(x)=\dfrac{\prod_{i=1}^n(1-x^{a_i})}{(1-x)^n}g(x)=(1−x)n∏i=1n​(1−xai​)​

在 nn 较小,mm 很大的时候,可以考虑将 \prod_{i=1}^n(1-x^{a_i})∏i=1n​(1−xai​)​ 暴力展开,对于 (1-x)^{-n}(1−x)−n 使用牛顿二项式定理。即,

(1-x)^{-n}=\sum_{i\ge0}\binom {n+i-1}{i}x^i(1−x)−n=i≥0∑​(in+i−1​)xi

枚举前一个式子 xx 的幂次,假设为 kk,设 x^kxk 项的系数为 c_kck​,那么,

{\rm {ANS}}=\sum _{k=0}^m c_k\cdot\binom {n+m-k-1}{m-k}ANS=k=0∑m​ck​⋅(m−kn+m−k−1​)

时间复杂度:\Theta(2^n+m)Θ(2n+m)

(三)总结

总的来说,这道题适合 搜索/动态规划 的初学者练习。

有一点点的思维难度。

这道题的价值在于,它既可以从简单的动态规划开始,一路优化,也可以从生成函数的视角观察,继续优化。这两条道路,竟是殊途同归。或许,这也是数学的魅力吧。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值