书生·浦语大模型第一课笔记

本文介绍了书生·浦语的全链条开源开放体系,包括数据预处理、高可扩展预训练、微调方法、轻量化部署、模型评测工具和应用领域。主要关注了InternLM2的更新特点,如对话生成、数据分析能力的增强,以及体系在整体能力提升和特定领域的应用,同时讨论了其优点和短板。
摘要由CSDN通过智能技术生成

 

书生·浦语全链条开源开放体系流程

数据→预训练→微调→部署→评测→应用

2dfe8966e9de450d8d300fa261bfe93e.png高质量数据语料 :                                               

f51a6812aff347ae85fc9245223da8c5.png

 预训练:    ① 高可扩展                                                                   ②极致性能优化                                                             ③兼容主流                                                                   ④开箱即用                                                                            b07f4feafb2a4e73a3654f8217857964.png

 微调:有监督微调,增量续训

06739379f99746ab8f073cae59af1aa6.png

 部署:                                                                         (轻量化)                                            567d839eb7954cfc9e1d433cac4b0944.png

一般流程:                                                                   评测→构建智能体→模型评测→模型部署 8eb47c691f18481e918831545cd2a4d5.png

 评测  :                                                                      1a1cb16e9f4a490da76aea65b2ce9e04.png

 三模块:                                                CompassRank:中立全面的性能榜单                   

CompassKit:大模型评测全栈工具链                  

CompassHub:高质量评测基准社区(开源开放)  

dc6a621e9479477c8165b935a0c3b443.png

02e73ec7fc0e48c39e2b486cf87c8a42.png 

e16e2ae6a410435885263d9f7c6a6ba4.png 

 应用:                                                               

bfadcf3dfea54495a932d6aac4f40746.png

 

书生·浦语大模型开源历程 

0c36f86e641f4362a5c192862c8cc344.png语言建模,新一代数据清洗技术的特点: 

多维度数据价值评估,高质量语料驱动的数据富集,有针对性的数据补齐 

ed11a39210e94ed7889585a1d356bed9.png

InternLM2的主要特点: 

 超长上下文、综合性能全面提升、优秀的的对话和创作体验、工具调用能力整体提升、突出的数理能力和实用的数据分析能力

1f9dcf10469348cd8d16603e4e9d146f.png

更新后的特点:AI对话生成,充满人文关怀的对话,创造力想象力,强大的内计算能力(高准确率,强大计算力)→代码解释器,数据分析功能 强大等等。

9049909b8ff84f16a210e9b8595bfe6e.png 

c365188bdcd24c93810b60ad46fe2b47.png

 

书生·浦语全链条开源开放体系:                                数据→预训练→微调→部署→评测→应用   

d82fb10602134bfeb2bf9f1811ddf9e8.png

 应用领域                                                            

e982427e9b9f49c8bf3c11e8fd26b68d.png综合性分析考虑,                                               

优点:整体能力有较大提升;                         

“理科”能力和模型尺寸关联性高 

缺点:复杂推理仍是短板;                           

模型主客观性能需要综合参考

8a065de9d4f94b628f14e9a3c9410497.png 

2fef10eef9744ecabbc9177bfd0eb0ed.png 

35f589ba91a843c28e76c4cff46beef9.png 

de92cb7037f6425291f8c730d93a4a95.png 

4247ed24d79e46fe94ff1c58077a9809.png 

a6f27e7b8d574862a780116dab4a0684.png 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值