前言
在学习高精度加法和高精度乘法前,我们可以先了解一下C++中各数据类型存储的数据范围
数据类型 | 取值范围 | 位数 |
unsigned int | 0~4294967295 | 10位 |
int | -2147483648~2147483647 | 10位 |
unsigned long | 0~4294967295 | 10位 |
long | -2147483648~2147483647 | 10位 |
long long | -9223372036854775808~9223372036854775807 | 19位 |
unsigned long long | 0~1844674407370955161 | 19位 |
__int64 | -9223372036854775808~9223372036854775807 | 19位 |
unsigned __int64 | 0~18446744073709551615 | 20位 |
可以看到,即使是unsigned __int64,也不过存储20位而已,而在很多题目中,有的数据量极大,可能超过100位;所以我们可以使用数组来存储每一位的数字,接着使用竖式加法和竖式乘法来模拟计算,使用数组存储答案。
高精度加法
核心思想及步骤
1.使用字符串输入加数和被加数,逆向存储加数和被加数到数组中(使用逆向存储的主要原因是保护结果末尾可能产生的0不被误认为前导零)
2.使用数组进行竖式加法
3.去除前导零,即找到第一个不为0的位置,接着从此开始逆序打印
C++代码
#include<iostream>
#include<vector>
using namespace std;
const int MAX = 9000;
int a[MAX + 1], b[MAX + 1];
string s1, s2;
void plu() {
int up = 0; //up存储进位信息
for (int i = 0; i <= MAX; i++) {
a[i] = a[i] + b[i] + up;
up = a[i] / 10;
a[i] %= 10;
}
}
void print() {
int pos = 0;//以下循环找出首个不为0的位数
for (int i = MAX; i >= 0; i--) {
if (a[i] != 0) {
pos = i;
break;
}
}
for (int i = pos; i >= 0; i--)
cout << a[i];
}
int main() {
cin >> s1 >> s2;
int cnt1 = 0, cnt2 = 0;
for (int i = s1.size() - 1; i >= 0; i--)a[cnt1++] = s1[i] - '0';
for (int i = s2.size() - 1; i >= 0; i--)b[cnt2++] = s2[i] - '0';
plu();
print();
return 0;
}
高精度乘法
核心思想及步骤
1. 同样,使用vector逆序存储;
2.分两步:
(1)计算中间值,比如23*46,在竖式乘法中,会进行3*6和3*4以及4*3和4*2,这些中间值会被存储到新的vector中;
(2)接着进行进位,将这些中间值正确的加起来。
3.使用pop_back()去除前导零,最后打印
C++代码
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
vector<int> Muti(vector<int>& a, vector<int>& b) {
vector<int>ans(a.size() + b.size(), 0);
for (int i = 0; i < a.size(); i++) {//计算中间值,并存储起来
for (int j = 0; j < b.size(); j++) {
ans[i + j] = a[i] * b[j];
}
}
//将中间值正确的加起来并将每一位存储到vector中
int up = 0;
for (int i = 0; i < ans.size(); i++) {
up += ans[i];
ans[i] = up % 10;
up /= 10;
}
//去除前导零
while (ans.back() == 0 && ans.size() > 0) {
ans.pop_back();
}
return ans;
}
int main() {
string s1, s2;
vector<int>a, b;
cin >> s1 >> s2;
for (int i = s1.size() - 1; i >= 0; i--)a.push_back(s1[i] - '0');
for (int i = s2.size() - 1; i >= 0; i--)b.push_back(s2[i] - '0');
auto res = Muti(a, b);
for (int i = res.size() - 1; i >= 0; i--) {
cout << res[i];
}
return 0;
}