前言
树状数组是一种代码量小,功能强大的数据结构,能够实现线段树的大部分基础功能,在这篇blog中重点讲解单点修改,区间查询,以及区间修改,单点查询这两类操作,对于区间修改,区间查询,相较于树状数组,使用线段树是更好的选择。
为了更好的学习树状数组的原理及其使用方法,建议读者在学习了前缀和和差分后再学习,戳此。
树状数组原理
树状数组顾名思义就是类似于树型结构的数组,就如下图:
c数组对a数组中数据的存储其实运用到了树状数组的lowbit()运算;
下文中a,c数组基于上图进行说明。
lowbit()运算
举个例子:
我们如何知道c[9],c[10],c[11],c[12]中存储的数是什么?
对于非负整数9,10,11,12:
例如 9,其二进制为
(
1001
)
2
(1001)_2
(1001)2,那么 -9 的二进制也可以容易的求出来,就是9的二进制取反+1,即
(
0111
)
2
(0111)_2
(0111)2,接下来我们将9和-9的二进制进行按位与运算,得到
(
0001
)
2
(0001)_2
(0001)2,其十进制为1。
所以a[9]存储的是从自己开始数的前一位数据的和。
类比上述计算方式,易知c[10]存储的是从自己开始数的前两位数据的和;
…
以此类推。
所以lowbit(k) = k & -k;
那么如何构造树状数组呢?
很简单,比如对于
a
[
1
]
=
10
a[1] = 10
a[1]=10,那么从
p
o
s
=
1
pos = 1
pos=1 开始,每次
p
o
s
+
=
l
o
w
b
i
t
(
p
o
s
)
pos += lowbit(pos)
pos+=lowbit(pos) ,即1,2,4,8…,c[pos]都加上a[1],每一个数据都如此操作,最终得到一个树状数组c。
构造函数:
int lowbit(int k){
return k&-k;
}
void add(int v,int k){
while(k<=n){
a[k] += v;
k += lowbit(k);
}
}
树状数组功能
单点修改、区间查询
唉🤓☝,我这有一个问题:
给你一个长度为
n
n
n的数组,我需要实现两种操作:
(1) 在第
x
x
x 个位置上加上一个
v
a
l
val
val 值;
(2) 求出区间
[
L
,
R
]
[L,R]
[L,R] 的和。
对于第一个操作单点修改,其方法和上文中的构造函数相同:
void add(int v,int k){ //表示第k个位置上加上v
while(k<=n){
a[k] += v;
k += lowbit(k);
}
}
对于第二个操作,求区间和,我们运用前缀和的性质进行求解:
对于
[
L
,
R
]
[L,R]
[L,R]的区间和,我们只需要用
[
1
,
R
]
[1,R]
[1,R]的区间和减去
[
1
,
L
−
1
]
[1,L - 1]
[1,L−1]的区间和即可,这是求和函数:
int getsum(int k){
int ans = 0;
while(k){
ans += a[k];
k -= lowbit(k);
}
return ans;
}
区间 [ L , R ] [L,R] [L,R]的和就为: g e t s u m ( R ) − g e t s u m ( L − 1 ) getsum(R) - getsum(L-1) getsum(R)−getsum(L−1)。
我们通过一道例题加深着两种操作的使用。
单点修改、区间查询例题
C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的。
Input
第一行一个整数T,表示有T组数据。
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
Output
对第i组数据,首先输出“Case i:”和回车;对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
Sample Input
1
10
1 2 3 4 5 6 7 8 9 10
Query 1 3
Add 3 6
Query 2 7
Sub 10 2
Add 6 3
Query 3 10
End
Sample Output
Case 1:
6
33
59
以下给出我的AC代码:
#include<iostream>
#include<cmath>
#include<algorithm>
using namespace std;
const long long Max = 2000020;
int a[Max], n, m;
int lowbit(int k) {
return k & -k;
}
void add(int v, int k) {
while (k <= m) {
a[k] += v;
k += lowbit(k);
}
}
int getsum(int k) {
int ans = 0;
while (k) {
ans += a[k];
k -= lowbit(k);
}
return ans;
}
int main() {
cin >> n;
for (int i = 1; i <= n; i++) {
cout << "case " << i << ":" << endl;
cin >> m;
for (int j = 1; j <= m; j++) {
int val;
cin >> val;
add(val, j);
}
/*for (int i = 1; i <= m; i++)
cout << a[i] << " ";*/
while (1) {
string command;
int a, b;
cin >> command;
if (command == "End")
break;
cin >> a >> b;
if (command == "Add")
add(b, a);
else if (command == "Sub")
add(-b, a);
else if (command == "Query")
cout << getsum(b) - getsum(a - 1) << endl;
}
}
return 0;
}
区间修改、单点查询
唉🤓☝,我这又有一个问题:
给你一个长度为n的数组,我需要实现两种操作:
(1)给区间
[
L
,
R
]
[L,R]
[L,R]上的每个数都加上
v
a
l
val
val值;
(2)查询第
k
k
k个位置的值是多少;
这道题其实和上面的那道例题是相反的,这道题使用树状数组来维护原数组的差分数组即可~
(1)对于第一个操作,我们只需要在差分数组的第
L
L
L个位置加上
v
a
l
val
val值,接着在第
R
+
1
R+1
R+1位置上减去
v
a
l
val
val值即可;
(2)对于第二个操作,那就更简单了,就是求差分数组
[
1
,
K
]
[1,K]
[1,K]的前缀和。
接下来是代码实现:
#include<bits/stdc++.h>
using namespace std;
const long Max = 2000020;
int a[Max], n, m;
int lowbit(int n) { return n & -n; }
void add(int v, int k) {
while (k <= n) {
a[k] += v;
k += lowbit(k);
}
}
int getsum(int k) {
int ans = 0;
while (k) {
ans += a[k];
k -= lowbit(k);
}
return ans;
}
int main() {
cin >> n >> m;
memset(a,0,sizeof(a));
int last = 0;
for (int i = 1; i <= n; i++) {
int current;
cin >> current;
add(current-last, i);
last = current;
}
for (int i = 1; i <= m; i++) {
int choice;
scanf("%d",&choice);
if (choice == 1) {
int x,y,k;
cin>>x>>y>>k;
add(k,x);
add(-k,y + 1);
}
else if (choice == 2) {
int x;
cin>>x;
cout << getsum(x)<< endl;
}
}
return 0;
}
E n d End End