【单调队列&单调栈专题】&【蓝桥杯备考训练】:矩形牛棚、单调栈、滑动窗口、子矩阵、最大子序和、烽火传递【已更新完成】

目录

1、矩形牛棚(usaco training 6.1)

思路:

预处理的过程:

判断左右边界的过程:

代码:

2、单调栈(单调栈模板)

思路:

基本步骤:

1、维护单调性

2、处理要求的操作

3、入栈

代码:

3、滑动窗口(单调队列模板)

思路:

基本步骤(以求最大值为例):

1、维护单调性(在尾部做处理)

2、入队

3、判断是否滑出窗口,滑出则hh++

4、做要求的处理

代码:

4、子矩阵(第十四届蓝桥杯省赛C++ C组、第十四届蓝桥杯省赛Java C组/研究生组、第十四届蓝桥杯省赛Python A组)

思路:

固定左右边界进行枚举的过程:

实现得到滑动窗口最大值最小值的函数:

代码:

5、最大子序和(《算法竞赛进阶指南》)

思路:

滑动窗口中维护前缀和的单调性的步骤:

代码:

6、烽火传递(NOIP2010提高组初赛、《信息学奥赛一本通》)

思路:

维护单调性的步骤:

代码:


1、矩形牛棚(usaco training 6.1)

作为一个资本家,农夫约翰希望通过购买更多的奶牛来扩大他的牛奶业务。

因此,他需要找地方建立一个新的牛棚。

约翰购买了一大块土地,这个土地可以看作是一个 R行(编号 1∼R)C列(编号 1∼C)的方格矩阵。

不幸的是,他发现其中的部分方格区域已经被破坏了,因此他无法在整个 R×C 的土地上建立牛棚。

经调查,他发现共有 P 个方格内的土地遭到了破坏。

建立的牛棚必须是矩形的,并且内部不能包含被破坏的土地。

请你帮约翰计算,他能建造的最大的牛棚的面积是多少。

输入格式

第一行包含三个整数 R,C,P。

接下来 P 行,每行包含两个整数 r,c,表示第 r 行第 c 列的方格区域内土地是被破坏的。

输出格式

输出牛棚的最大可能面积。

数据范围

1≤R,C≤3000
0≤P≤30000
1≤r≤R1
1≤c≤C1

输入样例:
3 4 2
1 3
2 1
输出样例:
6
思路:

对于每行(预处理好每个方块上面最多能用的方块的个数),枚举其中的每列,分别判断出左右两边第一列比该列上面最多可用方块少的位置,然后底乘高算出面积,维护最大值即可

预处理的过程:
	for(int i=1;i<=n;i++)
		for(int j=1;j<=m;j++)
		{
			if(g[i][j]==0)
			{
				h[i][j]=h[i-1][j]+1;
			}
		}//记录这一位置上面能用的格子是多少 
判断左右边界的过程:
int work(int a[])
{
	a[0]=-1,a[m+1]=-1;
	int tt=0;
	//枚举左边第一个比这个位置上面能用的格子少的左边界 
	stk[++tt]=0;//把左边界加进去 
	for(int i=1;i<=m;i++)
	{
		while(a[i]<=a[stk[tt]])tt--;//栈顶元素大于等于当前元素的话弹出栈顶 
		l[i]=stk[tt];
		stk[++tt]=i; 
	} 
	
	tt=0;
	stk[++tt]=m+1;
	for(int i=m;i>=1;i--)
	{
		while(a[stk[tt]]>=a[i])tt--;
		
		r[i]=stk[tt];
		
		stk[++tt]=i;
	}
	int res=0;
	
	for(int i=1;i<=m;i++)
	{
		res=max(res,a[i]*(r[i]-l[i]-1));
	}
	return res;
}
代码:
#include<bits/stdc++.h>

using namespace std;

const int N=3010;

int n,m,p;

int g[N][N],h[N][N];

int l[N],r[N];

int stk[N];

int work(int a[])
{
	a[0]=-1,a[m+1]=-1;
	int tt=0;
	//枚举左边第一个比这个位置上面能用的格子少的左边界 
	stk[++tt]=0;//把左边界加进去 
	for(int i=1;i<=m;i++)
	{
		while(a[i]<=a[stk[tt]])tt--;//栈顶元素大于等于当前元素的话弹出栈顶 
		l[i]=stk[tt];
		stk[++tt]=i; 
	} 
	
	tt=0;
	stk[++tt]=m+1;
	for(int i=m;i>=1;i--)
	{
		while(a[stk[tt]]>=a[i])tt--;
		
		r[i]=stk[tt];
		
		stk[++tt]=i;
	}
	int res=0;
	
	for(int i=1;i<=m;i++)
	{
		res=max(res,a[i]*(r[i]-l[i]-1));
	}
	return res;
}

int main()
{
	cin>>n>>m>>p;
	
	for(int i=0;i<p;i++)
	{
		int r,c;
		cin>>r>>c;
		
		g[r][c]=1;//标记为破坏 
		
	}
	
	for(int i=1;i<=n;i++)
		for(int j=1;j<=m;j++)
		{
			if(g[i][j]==0)
			{
				h[i][j]=h[i-1][j]+1;
			}
		}//记录这一位置上面能用的格子是多少 
	
	int res=0;
	
	for(int i=1;i<=n;i++)
	{
		res=max(res,work(h[i]));
	}
	cout<<res;
	return 0;
} 

2、单调栈(单调栈模板)

给定一个长度为 N 的整数数列,输出每个数左边第一个比它小的数,如果不存在则输出 −1。

输入格式

第一行包含整数 N,表示数列长度。

第二行包含 N 个整数,表示整数数列。

输出格式

共一行,包含 N 个整数,其中第 i 个数表示第 i 个数的左边第一个比它小的数,如果不存在则输出 −1。

数据范围

1≤N≤1e5
1≤数列中元素≤1e9

输入样例:
5
3 4 2 7 5
输出样例:
-1 3 -1 2 2
思路:

经典单调栈模板

基本步骤:
1、维护单调性
while(tt>0 && s[tt]>=x)tt--;
2、处理要求的操作
if(tt<=0)cout<<"-1"<<" ";
		else cout<<s[tt]<<" ";
3、入栈
s[++tt]=x;
代码:
#include<bits/stdc++.h>

using namespace std;

const int N = 1
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值