【动态规划-数字三角形模型】:摘花生、最低通行费、方格取数【已更新完成】

该篇文章讲述了如何通过动态规划解决涉及二维网格的三个问题:摘花生(取最大花生数)、商人通行(最小费用)和同时取最大数字和的两条路径。通过实例展示了算法在解决这类IT技术问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、摘花生

Hello Kitty想摘点花生送给她喜欢的米老鼠。

她来到一片有网格状道路的矩形花生地(如下图),从西北角进去,东南角出来。

地里每个道路的交叉点上都有种着一株花生苗,上面有若干颗花生,经过一株花生苗就能摘走该它上面所有的花生。

Hello Kitty只能向东或向南走,不能向西或向北走。

问Hello Kitty最多能够摘到多少颗花生。
在这里插入图片描述
输入格式
第一行是一个整数T,代表一共有多少组数据。

接下来是T组数据。

每组数据的第一行是两个整数,分别代表花生苗的行数R和列数 C。

每组数据的接下来R行数据,从北向南依次描述每行花生苗的情况。每行数据有C个整数,按从西向东的顺序描述了该行每株花生苗上的花生数目M。

输出格式
对每组输入数据,输出一行,内容为Hello Kitty能摘到得最多的花生颗数。

数据范围
1≤T≤100 1≤R,C≤100 0≤M≤1000
输入样例:
2
2 2
1 1
3 4
2 3
2 3 4
1 6 5
输出样例:
8
16

思路:

模板类型题,只有向上向下两个方向,两个维度表示坐标即可
f[i][j]表示当前坐标为i,j,所能摘到的花生数量的集合,属性取最大值(所以f数组全部初始化为0即可)

代码:

#include<bits/stdc++.h>

using namespace std;

int t;

int r,c; 

const int N=103;

int a[N][N];

int f[N][N];//表示走到i j的时候摘得花生的最多值 

int main()
{
   
	scanf("%d",&t);
	
	while(t--)
	{
   
		int r,c;
		scanf("%d%d",&r,&c);
		for(int i=1;i<=r;i++)
			for(int j=1;j<=c;j++)
			{
   
				scanf("%d",&a[i][j]);
			}
		
		for(int i=1;i<=r;i++)
			for(int j=1;j<=c
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值