LeetCode Hot100刷题——除自身以外数组的乘积

238. 除自身以外数组的乘积

给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。

题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在  32 位 整数范围内。

请 不要使用除法,且在 O(n) 时间复杂度内完成此题。

示例 1:

输入: nums = [1,2,3,4]
输出: [24,12,8,6]

示例 2:

输入: nums = [-1,1,0,-3,3]
输出: [0,0,9,0,0]

提示:

  • 2 <= nums.length <= 105
  • -30 <= nums[i] <= 30
  • 输入 保证 数组 answer[i] 在  32 位 整数范围内

思路分析

如果用除法的话,可以先算所有数的乘积,然后每个位置除以自己。但题目中不允许使用除法,我想到的另一个方法是前缀和后缀的乘积。比如,对于每个元素 i 来说,左边所有元素的乘积乘上右边所有元素的乘积,就是结果。那这样,先从左到右计算每个元素的左边乘积,存到一个数组里,然后从右到左计算右边乘积,再乘到对应的左边乘积上,得到最终结果。

具体步骤

  1. 初始化一个answer数组,长度和nums一样。
  2. 计算左边的乘积,从左到右遍历。首先answer[0] = 1,然后后面的每个元素 i ,answer[i] = answer[i-1] * nums[i-1]。这样answer数组此时保存的是每个元素的左边乘积。
  3. 然后计算右边的乘积,用一个变量rightProduct来保存右边的累积,初始化为1。
  4. 从右往左遍历,每次将answer[i]乘以rightProduct,然后更新rightProduct *= nums[i]。这样,在遍历过程中answer[i] = left[i] * rightProduct。其中rightProduct是右边所有元素的乘积。

这样的话,整个过程是两次遍历

        首先初始化answer数组。第一个循环,从左到右填充左边乘积。然后第二个循环,从右到左,用rightProduct变量来乘。具体步骤:

        初始化answer数组,长度为nums.length。answer[0] = 1。然后对于i从1到nums.length-1,answer[i] = answer[i-1] * nums[i-1]。

        然后初始化rightProduct为1。然后从i=nums.length-1到0,循环。每次将answer[i]乘以rightProduct,然后rightProduct *= nums[i]。

程序代码

class Solution {
    public int[] productExceptSelf(int[] nums) {
        int n = nums.length;
        int[] answer = new int[n];
        answer[0] = 1;
        // 计算每个元素的左边乘积
        for(int i = 1; i < n; i++){
            answer[i] = answer[i - 1] * nums[i - 1];
        }

        // 计算右边乘积并乘以左边乘积
        int rightProduct = 1;
        for(int i = n - 1; i >= 0; i--){
            answer[i] *= rightProduct;
            rightProduct *= nums[i];
        }
        return answer;
    }
}
  1. 步骤分解

    • 前缀乘积计算:从左到右遍历数组,answer[i]存储nums[i]左边所有元素的乘积。

    • 后缀乘积整合:从右到左遍历数组,使用变量rightProduct动态维护当前元素右边的乘积,并直接将其乘到answer[i]上。

  2. 复杂度:两次遍历,时间复杂度O(n);结果数组外额外空间O(1),满足题目要求。

### LeetCode Hot 100 '自身以外数组乘积' Java 解决方案 对于给定的一个整数数组 `nums`,目标是构建一个新的数组 `answer`,使得 `answer[i]` 是了 `nums[i]` 外所有元素的乘积。此问可以通过两次遍历实现,在不使用额外空间的情况下完成计算。 #### 方法概述 通过两个方向的扫描来解决问:一次正向扫描用于累积左侧部分的结果;另一次反向扫描则更新右侧部分并最终形成完整的解法[^2]。 #### 正向扫描 初始化一个变量 `leftProduct` 来保存当前索引左边所有数字相乘得到的结果,并将其赋值给新创建的答案列表对应位置上。随着迭代过程不断更新这个累加器以便后续使用。 ```java public class Solution { public int[] productExceptSelf(int[] nums) { int length = nums.length; int[] answer = new int[length]; // 初始化为1是因为任何数与1相乘都等于其本身 int leftProduct = 1; for (int i = 0; i < length; ++i){ answer[i] = leftProduct; leftProduct *= nums[i]; } ``` #### 反向扫描 接着从右至左再次遍历输入数组的同时维护另一个临时变量 `rightProduct` 记录右边元素连乘结果。每一步都将之前存储好的左侧产品乘以此时获得的新因子存入答案数组相应下标的格子内。 ```java int rightProduct = 1; for (int i = length - 1; i >= 0; --i){ answer[i] *= rightProduct; rightProduct *= nums[i]; } return answer; } } ``` 这种方法不仅满足目要求的空间复杂度 O(1),而且时间效率也达到了最优水平——线性的O(n)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值