
object DataFrameTest {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder().master("local").appName("detaSetDemo").getOrCreate()
val dataFrame = spark.read.json("in/user.json")
dataFrame.printSchema()
dataFrame.show()
spark.stop()
}
}
注意:
如果从内存中获取数据,spark 可以知道数据类型具体是什么。
如果是数字,默认作 为 Int 处理;但是从文件中读取的数字,不能确定是什么类型,所以用 bigint 接收,可以和 Long 类型转换,但是和 Int 不能进行转换。
结果展示:

2.2.2 SQL语法
1)读取JSON文件创建DataFrame
val dataFrame = spark.read.json("in/user.json")
2)对DataFrame创建一个临时表
dataFrame.createTempView("user")
// 或
dataFrame.createOrReplaceTempView("user")
3)通过SQL语句实现查询全表
val frame = spark.sql("select * from user")
4)结果展示
frame.show()

注意:
普通临时表是 Session 范围内的,如果想应用范围内有效,可以使用全局临时表。使用全局临时表时需要全路径访问,如


最低0.47元/天 解锁文章
1457

被折叠的 条评论
为什么被折叠?



