这个案例演示了如何在[1]和[2]中解释的CNN分类中执行随机擦除 删除增强

CNN使用随机擦除增强分类(深度学习,图像分类,CV,MATLAB源码分享)
这个案例演示了如何在[1]和[2]中解释的CNN分类中执行随机擦除 删除增强。
在训练图像上随机创建一个矩形蒙版,以避免过拟合,如下所示。
在这个演示中,制作了一个灰色的遮罩,高度和宽度范围从1到图像大小的一半。
掩码的颜色和大小可以在脚本末尾的自定义函数中更改。
比较了随机擦除和不随机擦除的测试精度;使用该技术的测试精度明显高于不使用随机擦除 裁剪的测试精度。
因为网络在一定程度上避免了对训练数据的过拟合。
这是通过cifar-10数据集完成的。
你可以使用随机擦除 裁剪来缓解过拟合。
请添加图片描述

ID:1930691881306370

请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值