- 博客(948)
- 资源 (1)
- 收藏
- 关注
转载 Android性能优化典范 - 第6季
导语这里是Android性能优化典范第6季的课程学习笔记,从被@知会到有连载更新,这篇学习笔记就一直被惦记着,现在学习记录分享一下,请多多指教包涵!这次一共才6个小段落,涉及的内容主要有:程序启动时间性能优化的三个方面:优化activity的创建过程,优化application对象的启动过程,正确使用启动显屏达到优化程序启动性能的目的。另外还介绍了减少安装包大小的checklist以及如何
2016-12-15 23:19:00
734
1
原创 android开发(性能篇)
今天想说的重点是Android APP性能优化,也就是在开发应用程序时应该注意的点有哪些,如何更好地提高用户体验。一个好的应用,除了要有吸引人的功能和交互之外,在性能上也应该有高的要求,即时应用非常具有特色,在产品前期可能吸引了部分用户,但是用户体验不好的话,也会给产品带来不好的口碑。那么一个好的应用应该如何定义呢?主要有以下三方面: 业务/功能 符合逻辑的交互 优...
2016-09-01 12:58:59
3417
1
原创 项目经理面试题
1.请你谈谈你自己 2.如何安排自己的时间?会不会排斥加班? 3.为什么离开上一个工作? 4.你对未来五年的规划为何? 5.谈谈你过去做过的自认为最成功一个案例。 6.谈谈你过去的工作经验中,最令你挫折的事情。 7.项目的关键时期,进度非常紧张,作为项目经理的您,恨不能一个人当两个人用,偏偏在这个时候,您得知一位重要的项目成员的家人重病,这时,您会如何处理(让他回家探望还是坚守岗位
2016-08-16 19:55:59
17395
1
原创 产品经理面试题
动机说明为什么要做产品经理?你是因为做不了技术才做产品的吗?你的职业规划?为什么想进大公司?你适合大公司的特质?你个人想做什么方向的产品?为什么?你为做产品都做了哪些准备?产品经理所需的素质(能力要求)?作为学XX专业的,不是计算机类似专业,你为什么想去做产品?
2016-08-15 21:50:22
3326
转载 后台开发工程师面试题
1、理论基础知识· JAVA基础· 通用问题· 开放式问题· 设计模式相关问题· 代码设计相关问题· 语言相关问题· Web相关问题· 数据库相关问题· 非关系型数据库相关问题· 代码版本管理相关问题· 并发问题· 分布式系统相关问题· 软件生命周期和团队管理相关问题· 逻辑和算法相关问题· 软件架构相关问题· 面向服务架构(SOA)
2016-08-15 14:29:03
4206
转载 软件测试工程师面试题
1.白箱测试和黑箱测试是什么?什么是回归测试?2.单元测试、集成测试、系统测试的侧重点是什么?3.设计用例的方法、依据有那些?4.一个测试工程师应具备那些素质和技能?5.集成测试通常都有那些策略?6.你用过的测试工具的主要功能、性能及其他?7.一个缺陷测试报告的组成8.基于WEB信息管理系统测试时应考虑的因素有哪些
2016-08-15 09:55:48
3920
转载 软件测试工程师笔试题
软件测试题目 一、 判断题 (每题2分,20) 1、软件测试就是为了验证软件功能实现的是否正确,是否完成既定目标的活动,所以软件测试在软件工程的后期才开始具体的工作。 (初级) ( × ) 2、发现错误多的模块,残留在模块中的错误也多。( √ ) (初级) 3、测试人员在测试过程中发现一处问题,如果问题影响不大,而自己又可以修改,应立即将此问题正确修改,以加快、提高开发的进程。(
2016-08-15 09:50:14
22765
原创 Android面试题【高级工程师版】
Android 高级(★★★)一、 Android 性能优化(11.9 更新)1、 如何对 Android 应用进行性能分析2、 什么情况下会导致内存泄露3、 如何避免 OOM 异常4、 Android 中如何捕获未捕获的异常5、 ANR 是什么?怎样避免和解决 ANR(重要)6、 Android 线程间通信有哪几种方式(重要)7、 Devik 进程,linux 进程,线程的区别8、 描述一下 a...
2016-08-10 13:05:51
34805
1
转载 android笔试题
题号一二三总分合分人得分 注意事项:1. 本试卷共5页,满分100分;2. 请把学院、姓名、班级写到密封线内,考试时间90分钟;3. 请不要把答案写在密封线内 得分阅卷人
2016-08-08 22:40:39
5499
转载 java面试题
Java泛型面试题1. Java中的泛型是什么 ? 使用泛型的好处是什么?这是在各种Java泛型面试中,一开场你就会被问到的问题中的一个,主要集中在初级和中级面试中。那些拥有Java1.4或更早版本的开发背景的人都知道,在集合中存储对象并在使用前进行类型转换是多么的不方便。泛型防止了那种情况的发生。它提供了编译期的类型安全,确保你只能把正确类型的对象放入集合中,避免了在运行时出现C
2016-07-21 13:04:13
1406
转载 Android面试题【初级工程师版】
1:Android中五种数据存储方式分别是什么?他们的特点?(1)SharedPreference,存放较少的五种类型的数据,只能在同一个包内使 用,生成XML的格式存放在设备中(2) SQLite数据库,存放各种数据,是一个轻量级的嵌入式数据库(3) File文件,通过读取写入方式生成文件存放数据(4) ContentProvider,主要用于让
2016-07-21 12:53:35
23111
转载 ios面试题汇总
一个区分度很大的面试题考察一个面试者基础咋样,基本上问一个 @property 就够了: @property 后面可以有哪些修饰符?什么情况使用 weak 关键字,相比 assign 有什么不同?怎么用 copy 关键字?这个写法会出什么问题: @property (copy) NSMutableArray *array;如何让自己的类用 copy 修饰符?如何重写带 copy 关键
2016-06-26 23:16:05
2106
原创 Android 开发资源
Android 已经成为了世界上最受欢迎的操作系统之一。成千上万的智能手机和平板都是运行着Android。Android基于Linux系统架构,由Android公司开发。2005年该公司被 Google收购。Android最棒的是,它是一个允许用户根据需求进行定制的操作系统。如果你是一位Android开发人员,你不必担心Google会因为修改系统对你起诉。那么,你是否已经打算学习一下Android
2016-05-17 19:38:40
1065
原创 ios学习资源
問:學習Objective-C的書籍?答:Effective objective-C 2.0编写高质量ios和OS X代码的52个有效方法Learn Objective–C on the Mac by Mark Dalrymple and Scott Knaster, Apress.這本的內容是Objective-C跟一些基本的Cocoa Foundation Framework,是學習Obj...
2016-05-15 17:52:21
11845
1
原创 iOS逆向工程-工具篇
对于初开始学习iOS逆向工程的人来说,实现一个tweak可以算是入门逆向工程了。当然了,可能你现在还不知道tweak是什么。简单来说,你可以把一个tweak当作某一个app的一个插件(类似于浏览器广告屏蔽插件)。在app运行的时候,tweak会hook住某个函数,然后在hook的函数里面,你可以插入你的代码。比如用户在登陆微信账号的时候,tweak可以hook住登录函数,dump出
2016-05-10 22:24:10
7019
原创 android逆向工具
开始安卓逆向之前 必须安装JAVA JDK下载地址:http://www.oracle.com/technetwor ... nloads-1880260.html逆向必备工具:1.APKIDE(改之理)是一款APK反编译可视化工具 全自动的反编译、编译、签名Apk链接:http://pan.baidu.com/s/1mgwPBL2 密码:ok802.APKTo
2016-05-10 11:04:00
12144
转载 chisel
LLDB 是一个有着 REPL 的特性和 C++ ,Python 插件的开源调试器。LLDB 绑定在 Xcode 内部,存在于主窗口底部的控制台中。调试器允许你在程序运行的特定时暂停它,你可以查看变量的值,执行自定的指令,并且按照你所认为合适的步骤来操作程序的进展。(这里有一个关于调试器如何工作的总体的解释。)相信每个人或多或少都在用LLDB来调试,比如po一个对象。LLDB的是非常强大的
2015-12-21 19:14:50
811
原创 不同段位的RAG选择
核心结论:简单查询 → Naive RAG(成本优先)全局分析 → Graph RAG(效果优先)复杂任务 → Agentic RAG(动态规划)企业级应用 → DeepSearch(循环验证)
2025-07-29 21:45:54
880
原创 一文彻底讲透:AI大模型应用架构全解析
引言大模型应用架构是连接基础模型能力与实际业务场景的关键桥梁,它通过系统化的设计,将大模型的潜力转化为可落地的解决方案。。这种架构设计不仅提高了系统的可扩展性和稳定性,也增强了模型在不同业务场景中的适应性和价值输出能力。本文将从数据层、预处理层、知识与模型中台层、模型层与训练优化层、应用层及技术支撑层六个维度,全面剖析大模型应用架构的组成与功能。
2025-07-29 21:38:45
1262
原创 结果交付:企业级LLM+MCP+RAG+Agent融合架构正在重构AI基建标准!
通过MCP与RAG和Agent的深度融合,我们成功构建了一个既能理解文档内容又能执行复杂任务的智能系统。这套架构不仅在技术上实现了创新,更在实际应用中展现了强大的价值。标准化接口:MCP协议确保了系统的可扩展性和互操作性智能缓存:两级缓存机制将性能提升了90%以上模块化设计:服务端和客户端可以独立升级和扩展生产就绪:经过三个月生产环境验证,稳定可靠。
2025-07-29 19:51:44
759
原创 1. 上下文工程 (Context Engineering) -- 现代 AI 系统的架构基础
随着大型语言模型(LLM)能力的日益增强,人工智能(AI)开发的焦点正从孤立的交互转向构建复杂的、有状态的系统。在这种背景下,一个名为。
2025-07-29 19:32:45
1039
原创 从0到1构建商用Agent(智能体):Coze的价值和架构是什么
"技术部门很无奈:"可以,但要排期3个月,还需要从零搭建工作流引擎、模型调度、工具集成..."最终结果往往是项目搁浅。它不是简单的工具,而是一套完整的技术解决方案:底层集成了GPT、Claude、豆包、通义千问、DeepSeek等多个大模型,通过可视化的工作流引擎,让业务人员像搭积木一样构建AI应用。Coze通过分层解耦的架构设计,将复杂的Agent开发从"写代码"变成了"拖节点",本质上是一个让业务逻辑配置化的Agent操作系统。"我想要一个AI助手帮我们自动分析销售数据,生成周报..."
2025-07-29 19:27:43
641
原创 从0到1构建商用Agent(智能体):为什么技术框架首选Dify
无论是招行的理财系统、小红书的审核平台,还是字节的内部服务,Dify都扮演着"智能中间层"的角色——它不替代原有的核心业务系统,而是通过工作流编排,将AI大模型的理解和推理能力无缝融入到现有业务流程中。通过精细化的审核规则配置,人工审核工作量减少70%,审核准确率提升到99.2%。比如处理客户投诉,传统AI可能直接给出回复,而Dify的工作流会先判断投诉类型,然后查询相关政策,接着生成标准回复,最后记录到CRM系统。这种"渐进式智能化"的方式,让企业能够在不改动核心架构的前提下,快速获得AI能力的加持。
2025-07-29 19:25:17
851
原创 一文全解析:AI 智能体 8 种常见的记忆(Memory)策略与技术实现
它能够在保持对话响应速度的同时,保留大量历史信息,适合低延迟对话、时间跨度较大的任务型助手,以及需要随时回溯旧信息的场景:当用户提出涉及过往内容的问题时,系统可以像操作系统一样将“被交换出去”的记忆及时“唤醒”,实现高效又节省资源的记忆管理。,一旦窗口滑过,旧信息就永久丢失,无法支持真正的长期记忆。:当用户提问中包含关键词,而这些关键词所需的信息不在当前RAM中,系统就会触发“Page Fault”,从被动记忆中搜索匹配内容,并“page in”上下文,再供LLM使用。提取出来,逐步构建起一个知识图谱。
2025-07-29 19:20:19
645
原创 彻底说清:企业级Human-in-the-Loop AI Agent系统架构与实践!
Human-in-the-Loop(HIL)是一种AI系统设计模式,它允许人类在AI Agent的决策过程中介入并提供反馈或决策。在HIL系统中,AI Agent在执行某些关键操作前会暂停,等待人类的审批或输入,然后再继续执行。数据库管理:AI Agent在删除数据库记录前,需要人类确认。金融交易:AI Agent在执行大额转账前,需经人工审批。医疗诊断:AI Agent在推荐治疗方案时,医生需最终确认。HIL的引入,不仅提升了AI系统的安全性,还增强了人类对AI决策的信任感。
2025-07-29 19:17:20
984
原创 AI Agent 基础设施
AI Agent是利用人工智能技术以实现特定目标并为用户完成任务的软件系统。它们展现出推理、规划、记忆以及一定程度的自主性,能够进行决策、学习和适应环境。这些Agent能够同时处理包括文本、语音、视频、音频和代码在内的多模态信息,并具备对话、推理、学习和决策的能力。Agent和Workflow的区别:Workflow是把固定的流程和逻辑固化成工作流,处理流程是固定的;而Agent则在运行时确定执行方案、调用工具、反思,具备较大的自主性。
2025-07-29 19:15:25
638
原创 嵌入式系统软件架构设计(长篇深度好文)
嵌入式是软件设计领域的一个分支,它自身的诸多特点决定了系统架构师的选择,同时它的一些问题又具有相当的通用性,可以推广到其他的领域。提起嵌入式软件设计,传统的印象是单片机,汇编,高度依赖硬件。传统的嵌入式软件开发者往往只关注实现功能本身,而忽视诸如代码复用,数据和界面分离,可测试性等因素。从而导致嵌入式软件的质量高度依赖开发者的水平,成败系之一身。随着嵌入式软硬件的飞速发展,今天的嵌入式系统在功能,规模和复杂度各方面都有了极大的提升。
2025-07-14 16:05:30
1292
原创 智驾linux系统裁剪的困难点
智能驾驶操作系统的内核是基于标准的POSIX接口,兼容Adaptive AUTOSAR等国际主流系统软件中间件,满足智能驾驶不同应用所需的功能安全和信息安全要求。考虑当前主流的智驾操作系统能力,我们可以根据自身研发能力制定不同的策略要求,增值不同的研发手段。最终目的是应用智驾系统SOC异构硬件的单元架构和承载功能满足功能安全的不同要求:AI单元内核系统支持QM ~ ASIL B,计算单元内核系统支持QM ~ ASIL D,控制单元内核系统需要支持ASIL D安全级别。
2025-07-14 15:39:18
339
原创 关于asil-d和asil-b的几点疑问
在分析是否符合汽车级ASIL-D安全标准(ISO 26262标准中的最高汽车安全完整性等级)必须使用MCU,以及SoC是否仅限于ASIL-B时,我们需要从功能分配、安全需求和技术实现的角度进行评估。
2025-07-11 18:23:02
839
原创 那些C++牛人的博客
现整理收集C++世界里那些“牛人”的个人博客。凡三类:一是令人高山仰止的大牛,对C++语言本身产生过深远的影响的人;二是C++运用炉火纯青的高手,有原创性的技术干货;三是中文世界里的C++牛人。
2024-12-04 00:34:36
1157
原创 如何打造自动驾驶的数据闭环
最近自动驾驶和数据闭环结合在一起,原因是自动驾驶工程已经被认可是一个解决数据分布“长尾问题”的任务,时而出现的corner case(极端情况)是是对数据驱动的算法模型进行升级的来源之一,如图所示。构成这个自动驾驶数据闭环的核心技术和模块都有哪些呢?首先是这个自动驾驶的算法和模块是数据驱动的,其次源源不断的数据需要有合理有效的方法去利用。如图是Tesla众所周知的Autopilot数据引擎框架:确认模型误差、数据标注和清洗、模型训练和重新部署。这是谷歌waymo报告提到的数据闭环平台:其中有数据挖掘、主动学
2022-09-20 09:48:24
4371
1
原创 联邦学习开源框架方案选型
FATE (Federated AI Technology Enabler) 是微众银行AI部门发起的开源项目,为联邦学习生态系统提供了可靠的安全计算框架。FATE项目使用多方安全计算 (MPC) 以及同态加密 (HE) 技术构建底层安全计算协议,以此支持不同种类的机器学习的安全计算,包括逻辑回归、基于树的算法、深度学习和迁移学习等。功能:全面,同时覆盖横向、纵向、迁移联邦学习,包含联邦学习的整体流程;
2022-09-17 11:24:36
1564
原创 mindspore详解
由于积累时间短,MindSpore当前在算子支持方面还是相对薄弱的,MindSpore内置的静态的算子库可能无法满足用户的需求,之前版本的MindSpore的自定义算子功能也存在着平台覆盖不到位,开发过程繁琐及第三方算子接入困难的问题。
2022-09-17 02:45:00
1789
原创 揭秘有状态服务上 Kubernetes 的核心技术
背景随着 Kubernetes 成为云原生的最热门的解决方案,越来越多的传统服务从虚拟机、物理机迁移到 Kubernetes,各云厂商如腾讯自研上云也主推业务通过Kubernetes来部署服务,享受 Kubernetes 带来的弹性扩缩容、高可用、自动化调度、多平台支持等益处。然而,目前大部分基于 Kubernetes 的部署的服务都是无状态的,为什么有状态服务容器化比无状态服务更难呢?它有哪些难点?各自的解决方案又是怎样的?本文将结合我对 Kubernetes 理解、丰富的有状态服务开发、治理、容器化经验
2022-09-10 20:30:46
590
原创 LSM树和Elasticsearch的索引写入机制
LSM树(Log Structured Merge Tree,结构化合并树)的思想非常朴素,就是将对数据的修改增量保持在内存中,达到指定的大小限制后将这些修改操作批量写入磁盘(由此提升了写性能),是一种基于硬盘的数据结构,与B-tree相比,能显著地减少硬盘磁盘臂的开销。是B树的持久化实现,不仅支持单条记录的增、删、读、改操作,还支持顺序扫描(B+树的叶子节点之间的指针),对应的存储系统就是关系数据库(Mysql等)。对比LSM,ES的这种segment分段写,再合并的机制,和LSM的思想是一致的。
2022-09-10 17:22:39
1983
转载 群集逻辑卷管理器(群集 LVM)
系统通过不同的工具来协调群集 LVM:分布式锁管理器 (DLM)通过群集范围的锁定协调对多个主机之间共享资源的访问。逻辑卷管理器 (LVM2)LVM2 提供磁盘空间的虚拟池,允许将一个逻辑卷灵活分布到多个磁盘。群集逻辑卷管理器(群集 LVM)群集 LVM一词表示群集环境中使用 LVM2。这需要进行一些配置调整,以保护共享储存上的 LVM2 元数据。自 SUSE Linux Enterprise 15 起,群集扩展使用 lvmlockd,取代了众所周知的 clvmd。
2022-09-09 16:51:37
1415
转载 企业自建DCI的关注点
金融政府大企业等数字化转型,数据如同企业的“血液”变的越来越重要,各个国家和企业加大了对数据中心建设投入。根据相关报告,到2025年(DC)数量将增长4倍,数据中心间数据(DCI)流量年复合增速达到48%。数据中心间流量的增长带来专线租用费用成倍增加,严重超过企业预算,极大的压抑了业务对带宽的需求,成为企业数字化转型的瓶颈。同时租用专线服务响应时间不可控、网络质量无保证等问题逐渐凸显,金融政府大企业租用光纤来自建DCI(数据中心互联)网络,逐渐成为一种趋势。那么自建DCI建网,需要关注哪些问题呢?
2022-09-07 17:13:52
462
原创 深度了解特征工程
什么是特征工程?特征工程解决了什么问题?为什么特征工程对机器学习很重要?怎么做特征工程?怎么做好特征工程?集众多博友智慧,一文全面了解并应用特征工程。特征工程(Feature Engineering)特征工程是将原始数据转化成更好的表达问题本质的特征的过程,使得将这些特征运用到预测模型中能提高对不可见数据的模型预测精度。特征工程简单讲就是发现对因变量y有明显影响作用的特征,通常称自变量x为特征,特征工程的目的是发现重要特征。如何能够分解和聚合原始数据,以更好的表达问题的本质?这是做特征工程的目的。...
2022-08-26 10:41:01
3759
2
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅