这只是列举了一部分,还有很多,我挑选四项简单举例说明一下。
-
格式统一
-
命名规范
-
注释清晰
-
避免重复代码
以下用 Python 代码分别举例说明:
格式统一
格式统一包括很多方面,比如 import
语句,需要按照如下顺序编写:
-
Python 标准库模块
-
Python 第三方模块
-
应用程序自定义模块
然后每部分间用空行分隔。
import os
import sys
import msgpack
import zmq
import foo
再比如,要添加适当的空格,像下面这段代码;
i=i+1
submitted +=1
x = x*2 - 1
hypot2 = xx + yy
c = (a+b) * (a-b)
代码都紧凑在一起了,很影响阅读。
i = i + 1
submitted += 1
x = x * 2 - 1
hypot2 = x * x + y * y
c = (a + b) * (a - b)
添加空格之后,立刻感觉清晰了很多。
还有就是像 Python 的缩进,其他语言的大括号位置,是放在行尾,还是另起新行,都需要保证统一的风格。
有了统一的风格,会让代码看起来更加整洁。
命名规范
好的命名是不需要注释的,只要看一眼命名,就能知道变量或者函数的作用。
比如下面这段代码:
a = ‘zhangsan’
b = 0
a
可能还能猜到,但当代码量大的时候,如果满屏都是 a
,b
,c
,d
,那还不得原地爆炸。
把变量名稍微改一下,就会使语义更加清晰:
username = ‘zhangsan’
count = 0
还有就是命名要风格统一。如果用驼峰就都用驼峰,用下划线就都用下划线,不要有的用驼峰,有点用下划线,看起来非常分裂。
注释清晰
看别人代码的时候,最大的愿望就是注释清晰,但在自己写代码时,却从来不写。
但注释也不是越多越好,我总结了以下几点:
-
注释不限于中文或英文,但最好不要中英文混用
-
注释要言简意赅,一两句话把功能说清楚
-
能写文档注释应该尽量写文档注释
-
比较重要的代码段,可以用双等号分隔开,突出其重要性
举个例子:
=====================================
非常重要的函数,一定谨慎使用 !!!
=====================================
def func(arg1, arg2):
“”"在这里写函数的一句话总结(如: 计算平均值).
这里是具体描述.
参数
arg1 : int
arg1的具体描述
arg2 : int
arg2的具体描述
返回值
int
返回值的具体描述
参看
otherfunc : 其它关联函数等…
示例
示例使用doctest格式, 在>>>
后的代码可以被文档测试工具作为测试用例自动运行
a=[1,2,3]
print [x + 3 for x in a]
[4, 5, 6]
“”"
避免重复代码
随着项目规模变大,开发人员增多,代码量肯定也会增加,避免不了的会出现很多重复代码,这些代码实现的功能是相同的。
虽然不影响项目运行,但重复代码的危害是很大的。最直接的影响就是,出现一个问题,要改很多处代码,一旦漏掉一处,就会引发 BUG。
比如下面这段代码:
import time
def funA():
start = time.time()
for i in range(1000000):
pass
end = time.time()
print(“funA cost time = %f s” % (end-start))
def funB():
start = time.time()
for i in range(2000000):
pass
end = time.time()
print(“funB cost time = %f s” % (end-start))
if name == ‘main’:
funA()
funB()
funA()
和 funB()
中都有输出函数运行时间的代码,那么就适合将这些重复代码抽象出来。
比如写一个装饰器:
def warps():
def warp(func):
def _warp(*args, **kwargs):
start = time.time()
func(*args, **kwargs)
end = time.time()
print(“{} cost time = {}”.format(getattr(func, ‘name’), (end-start)))
return _warp
return warp
这样,通过装饰器方法,实现了同样的功能。以后如果需要修改的话,直接改装饰器就好了,一劳永逸。
当代码写时间长了之后,肯定会对自己有更高的要求,而不只是格式,注释这些基本规范。
但在这个过程中,也是有一些问题需要注意的,下面就来详细说说。
炫技
第一个要说的就是「炫技」,当对代码越来越熟悉之后,总想写一些高级用法。但现实造成的结果就是,往往会使代码过度设计。
这不得不说说我的亲身经历了,曾经有一段时间,我特别迷恋各种高级用法。
有一次写过一段很长的 SQL,而且很复杂,里面甚至还包含了一个递归调用。有「炫技」嫌疑的 Python 代码就更多了,往往就是一行代码包含了 N 多魔术方法。
然后在写完之后漏出满意的笑容,感慨自己技术真牛。
结果就是各种被骂,更重要的是,一个星期之后,自己都看不懂了。
其实,代码并不是高级方法用的越多就越牛,而是要找到最适合的。
越简单的代码,越清晰的逻辑,就越不容易出错。而且在一个团队中,你的代码并不是你一个人维护,降低别人阅读,理解代码的成本也是很重要的。
脆弱
第二点需要关注的是代码的脆弱性,是否细微的改变就可能引起重大的故障。
代码里是不是充满了硬编码?如果是的话,则不是优雅的实现。很可能导致每次性能优化,或者配置变更就需要修改源代码。甚至还要重新打包,部署上线,非常麻烦。
而把这些硬编码提取出来,设计成可配置的,当需要变更时,直接改一下配置就可以了。
再来,对参数是不是有校验?或者容错处理?假如有一个 API 被第三方调用,如果第三方没按要求传参,会不会导致程序崩溃?
举个例子:
page = data[‘page’]
size = data[‘size’]
这样的写法就没有下面的写法好:
page = data.get(‘page’, 1)
size = data.get(‘size’, 10)
继续,项目中依赖的库是不是及时升级更新了?
积极,及时的升级可以避免跨大版本升级,因为跨大版本升级往往会带来很多问题。
还有就是在遇到一些安全漏洞时,升级是一个很好的解决办法。
最后一点,单元测试完善吗?覆盖率高吗?
说实话,程序员喜欢写代码,但往往不喜欢写单元测试,这是很不好的习惯。
有了完善,覆盖率高的单元测试,才能提高项目整体的健壮性,才能把因为修改代码带来的 BUG 的可能性降到最低。
重构
随着代码规模越来越大,重构是每一个开发人员都要面对的功课,Martin Fowler 将其定义为:在不改变软件外部行为的前提下,对其内部结构进行改变,使之更容易理解并便于修改。
重构的收益是明显的,可以提高代码质量和性能,并提高未来的开发效率。
但重构的风险也很大,如果没有理清代码逻辑,不能做好回归测试,那么重构势必会引发很多问题。
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)
做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。
别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。
我先来介绍一下这些东西怎么用,文末抱走。
(1)Python所有方向的学习路线(新版)
这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
最近我才对这些路线做了一下新的更新,知识体系更全面了。
(2)Python学习视频
包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。
(3)100多个练手项目
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。
(4)200多本电子书
这些年我也收藏了很多电子书,大概200多本,有时候带实体书不方便的话,我就会去打开电子书看看,书籍可不一定比视频教程差,尤其是权威的技术书籍。
基本上主流的和经典的都有,这里我就不放图了,版权问题,个人看看是没有问题的。
(5)Python知识点汇总
知识点汇总有点像学习路线,但与学习路线不同的点就在于,知识点汇总更为细致,里面包含了对具体知识点的简单说明,而我们的学习路线则更为抽象和简单,只是为了方便大家只是某个领域你应该学习哪些技术栈。
(6)其他资料
还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。
这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。
一个人可以走的很快,但一群人才能走的更远。如果你从事以下工作或对以下感兴趣,欢迎戳这里加入程序员的圈子,让我们一起学习成长!
AI人工智能、Android移动开发、AIGC大模型、C C#、Go语言、Java、Linux运维、云计算、MySQL、PMP、网络安全、Python爬虫、UE5、UI设计、Unity3D、Web前端开发、产品经理、车载开发、大数据、鸿蒙、计算机网络、嵌入式物联网、软件测试、数据结构与算法、音视频开发、Flutter、IOS开发、PHP开发、.NET、安卓逆向、云计算
还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。
这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。
一个人可以走的很快,但一群人才能走的更远。如果你从事以下工作或对以下感兴趣,欢迎戳这里加入程序员的圈子,让我们一起学习成长!
AI人工智能、Android移动开发、AIGC大模型、C C#、Go语言、Java、Linux运维、云计算、MySQL、PMP、网络安全、Python爬虫、UE5、UI设计、Unity3D、Web前端开发、产品经理、车载开发、大数据、鸿蒙、计算机网络、嵌入式物联网、软件测试、数据结构与算法、音视频开发、Flutter、IOS开发、PHP开发、.NET、安卓逆向、云计算