我的github:codetoys,所有代码都将会位于ctfc库中。已经放入库中我会指出在库中的位置。
这些代码大部分以Linux为目标但部分代码是纯C++的,可以在任何平台上使用。
本文承接自:
目录
一、入口
入口点仿照stl:
//如果second为false则已经存在,发生了覆盖,用GetOldValue获得被覆盖的值
pair<iterator, bool> insert(T_DATA const& data)
{
T_COMP comp;
return insert(data, comp);
}
pair<iterator, bool> insert(T_DATA const& data, T_COMP& comp)
{
m_OldValueSeted = false;//清除被覆盖对象的有效标志
pair<iterator, bool> ret;
ret.first = end();
ret.second = false;
if (tree_head->free_head < 0 && m_array.Capacity() <= m_array.Size())
{
thelog << "超出容量限制" << ende;
return ret;
}
try
{
ret = _insert(data, comp);
}
catch (exception& e)
{
thelog << e.what() << ende;
}
//thelog<<"insert ret "<<ret.first.handle<<" "<<ret.second<<endi;
return ret;
}
//返回被覆盖的值,如果最近的操作没有发生覆盖则false
bool GetOldValue(T_DATA& ret)const
{
if (m_OldValueSeted)
{
ret = m_OldValue;
return true;
}
else
{
return false;
}
}
入口点首先处理了需要扩展容量的情形,这个扩展指的是树的删除链表为空,需要从底层数组申请空间的情形。
我的实际应用场景更复杂些,如果底层数组也满了,就会再申请一块共享内存,由于两块共享内存地址地址无法连续,我用了一个地址映射表,从索引到数据要经过查表转换,这就是为什么我必须把底层操作抽象出来的原因。
根据实际需要增加了GetOldValue函数,用来返回被覆盖掉的值。这个功能到底应不应该存在,见仁见智。
T_COMP不理解就无视它,知道默认就是用“<”就可以了。
二、普通二叉树插入
普通插入很简单,由一组“_insert()”函数实现,前导“_”数量不同,表示不同的调用级别。
普通插入后由_RB_insert_Balance(position)函数完成平衡。如果忽略这一句就是普通插入。
如果是覆盖,则只替换数据,树结构不变,不需要平衡。
三、插入后的平衡
代码是比较简单的:
void _RB_insert_Balance(T_SHM_SIZE x)
{
T_SHM_SIZE p = TREE_NODE::at(x).hParent;
if (!_isRed(p))return;
//连续红,需要调整
bool isLeft = (x == TREE_NODE::at(p).hLeft);
T_SHM_SIZE g = TREE_NODE::at(p).hParent;
bool isL = (p == TREE_NODE::at(g).hLeft);
T_SHM_SIZE u = (isL ? TREE_NODE::at(g).hRight : TREE_NODE::at(g).hLeft);
if (_isRed(u))
{
//u为红只需要染色,然后递归
TREE_NODE::at(p).bColorRed = false;
TREE_NODE::at(u).bColorRed = false;
TREE_NODE::at(g).bColorRed = true;
_RB_insert_Balance(g);
}
else
{
if (isL)
{
if (isLeft)
{//LL
_RRotate(g);
_exchage_color(p, g);
}
else
{//LR
_LRotate(p);
_RRotate(g);
_exchage_color(x, g);
}
}
else
{
if (isLeft)
{//RL
_RRotate(p);
_LRotate(g);
_exchage_color(x, g);
}
else
{//RR
_LRotate(g);
_exchage_color(p, g);
}
}
}
}
x 插入的新节点
p x的父节点
u x的叔叔,也就是p的兄弟
g x的祖父,也就是p和u的父节点
_isRed(h) 判断节点是不是红色
_LRotate(h) 左旋,只改变父子关系,颜色和数据不变
_RRotate(h) 右旋,只改变父子关系,颜色和数据不变
_exchage_color(h1,h2) 交换两个节点的颜色
四、算法解惑
这个算法的原则其实很简单,不是双红不用处理,是双红则:
- 如果上一层两个都是红,则g必然是黑(红黑树规则),于是就将上一层两个都变成黑、g变成红,于是下面符合规则了,但是g变成了红,可能造成新的双红,于是再对g做平衡。这个过程可能一直递归到顶。
- u是黑,挪一个红过去。具体挪法分四种情形。听起来也不简单?
其实吧,所谓“u是黑”,意思是u是空啊,u不是空的话g左右两边深度就不一样了,违反红黑树规则。所以双红其实就是g下面只有一个红节点,新的节点有挂在了这个红节点下面,也就是“g-红-红”,只需要重新布局,改成g下面一边一个就行了。
而第一种情形的“u是红”呢,就是g下面两个都是红,新的节点又挂在其中一个下面,也就是“g-红红-红”,不可能再有别的黑色数据节点(不是空)存在。
是不是豁然开朗?
(这里是结束)