逻辑运算知识点:
1、位运算:按位与、按位或
按位与:将2个数据的二进制码对齐,如果都为1,计算结果1,否则为0
按位或:将2个数据的二进制码对齐,只要有1,计算结果1,否则为0
逻辑运算优先级:非、与、或
已知A=35H,计算A ^ 05H v A ^ 30H (计算顺序与或非)
二进制转换:(与:^ 或:v)
A-35H:00110101
05H:00000101
30H:00110000
①A ^ 05H:00000101
②A ^ 30H:00110000
③ ① v ② : 00110101 -> 35H
2、集合相关的知识点:
特点:无序,元素不重复
注意:集合内没有元素叫空集
数据结构:
栈:
容器,只有一个开口控制数据的存取(进出)
特点:先进后出
栈顶:通常用top表示
用数组模拟栈:栈底下标为0,栈顶用top表示(top位置处不保存)
栈内元素个数:top
判断栈是否为空:当top为0,栈为空
删除栈内元素:top–
增加元素:a[top]=新元素,然后top++
清空栈:top=0
队列:
就是排队吃饭的队伍,有队首和队尾
允许在队首删除元素(打到饭跑路)
允许在队尾增加元素(排队打饭)
队列中有两个重要的信息:
队首front (f)
队尾rear (r):队尾不保存元素
队伍长度=r-f
判断队伍为空:r==f
增加元素:a[r] = 新元素,r++
删除元素:f++
注意事项:数组模拟增删元素时,元素会逐步向后移动,所以要确保数组长度是足够的
特殊队列:
双端队列,允许两端弹出元素
循环队列,首位连接构成一个圈
树形结构:
有多个元素构成的集合(可以是0个),每一个元素向下可以有多个"儿子"(子树)
树的定义:
每个元素都可以称为节点(node)
子树:
任意一颗非空树中(n>0),有一个特定的节点,称为根节点或树根(root)
除根结点外,其余节点可分成m(m>=0)个互不相交的有限子集,每个子集可以看作一棵树,这些子集称为这颗树的子树
没有子树的结点,称为叶子结点或叶结点
节点的度:节点的下方有几个分支,叶子结点的度为0
树的深度:从根结点开始一层一层地走,最深走到几层(可以理解成深度)
二叉树:度为二的树
在二叉树的第i层上最多有2的(i-1)次方个结点(i>=1)
深度为k的二叉树最多有2的k次方-1个结点
满二叉树:(深度为k的二叉树有2的k次方-1个结点)
除最后一层每一层上的所有结点都有两个子节点
完全二叉树:
二叉树中除去最后一层为满二叉,且最后一层的结点依次从左到右分布,不能有跳过
例子:
完全二叉树最后一层某结点左子树为空,右子树有结点,这不是完全二叉树
二叉树的遍历:
遍历二叉树的根节点,左子树,右子树,则有:
先序(根左右)、中序(左根右)、后序列(左右根)
遍历方法:(非常好用)
在每个结点上做标记(先序标结点左边,中序标结点下边,后序标结点右边),从根节点上方画轮廓,穿过的顺序就是遍历的序列
序列构造二叉树:
还原一棵二叉树需要中序+(先序或后序)
具有n个结点的二叉树形态计算:
(2n)!/n!(n+1)!
后缀表达式(逆波兰表达式):
将表达式从左往右扫描,如果是数字,就入栈,如果是符号,
就取出栈顶的两个数字进行计算,第一个放右边,第二个放左边,计算好的结果再次入栈,当表达式扫描完毕,
最终计算结果就在栈顶
例子:
普通写法(中缀表达式):a+(b-c)
后缀表达式写法:abc-+
特点:后缀表达时没有括号,运算符从左往右即是运算顺序
图:
构成:由有限个结点和结点之间的边构成
表达方式:
G(V,E){G:表示一个图,V:表示结点集合,E:表示边集合}
例子:
G=(V,E),V={a,b,c},E={(a,b),(a,c)}
注意:结点数目有限非0,不能没有结点,边的数量有限
分类:
按照边分类:
有向图、有向图
无向图:
任意一条边都没有方向(无向边用小括号括起来),由于没有方向(a,b)和(a,b)是同一条边
有向图:
任意一条边都有方向
有向图的边叫做弧,出发结点叫弧尾,到达结点叫弧头
有向图用尖括号括起来 例:❤️,4>
由于没有方向<3,4>和<4,3>是两条边
完全图:(分两种:无向完全图[n*(n-1)/2条边],有向完全图[n*(n-1)条边])
图中任意两个结点都存在边相连,此时图拥有最多的边
结点的度:
无向图:结点相连的结点的数量
有向图:出度+入度
出度:以当前结点为出发地的边数量
入度:以当前结点为到达地的边数量
权和网:
权:图中边上的数字叫做权值
网:带权的图通常称为网