异构联邦学习的设备采样:理论、算法和实现

本文探讨了在异构网络中优化联邦学习(FedL)的过程,通过智能设备采样和设备间数据卸载来提高训练精度,同时考虑了网络资源限制。研究提出了新的优化方法,包括理论分析、序列凸优化器和基于GCN的采样策略,实验证明了在减少资源消耗的同时提升模型性能。
摘要由CSDN通过智能技术生成

异构联邦学习的设备采样:理论、算法和实现

Device Sampling for Heterogeneous Federated Learning: Theory, Algorithms, and Implementation

这篇文章的不足:

  1. 数据卸载占用被采样设备的计算、存储等,在现实生活中可能无法运用
  2. 数据卸载导致一个设备的数据传输到另一个设备,涉及隐私的泄露
  3. 需要等待数据卸载完成后再进行模型训练,也没有解决设备异构的问题
  4. 进行设备之间相似度对比时,也是耗时和占用计算和存储

传统的联邦学习(FedL)架构通过让工作设备训练由服务器定期聚合的本地模型来分布机器学习(ML)。然而,FedL忽略了当代无线网络的两个重要特征:(i)网络可能包含异构通信/计算资源,而(ii)设备的本地数据分布可能存在显著重叠。在这项工作中,我们开发了一种新的优化方法,通过智能设备采样和设备到设备(D2D)卸载来共同考虑这些因素。我们的优化旨在选择采样节点和数据卸载配置的最佳组合,以在网络拓扑和设备功能的现实约束下最大化FedL训练精度。通过对D2D卸载子问题的理论分析,得到了新的FedL收敛界和一个有效的序列凸优化器。利用这一结果,我们开发了一种基于图卷积网络(GCNs)的采样方法,该方法学习网络属性、采样节点和最终卸载之间的关系,从而最大化FedL精度。通过对来自物联网测试平台的真实数据集和网络测量的评估,我们发现我们的方法在采样不到所有设备5%的情况下,在训练模型准确性和所需资源利用率方面都大大优于传统的联邦数据分析。

智能手机、无人机(uav)和其他组成物联网(IoT)的设备的激增正在导致数据生成呈指数级增长,并对边缘机器学习(ML)产生巨大需求[1]。例如,自动驾驶汽车上的传感器和摄像头模块每小时产生高达1.4 tb的数据[2],目的是训练用于智能导航的ML模型。在这样的环境中,在服务器上集中训练的传统ML模式通常是不可行的,因为(i)将这些大量数据从设备传输到云端会带来很长的传输延迟,(ii)由于隐私问题,用户有时不愿意共享他们的数据

联邦学习(FedL)是最近提出的一种分布式机器学习技术,旨在克服这些挑战[4],[5]。在FedL中,设备在其本地数据集上训练模型,通常采用梯度下降的方式,服务器定期汇总本地模型的参数以形成全局模型。然后将这个全局模型传送回设备进行下一轮本地更新,如图1所示。在传统的FedL中,每个设备处理自己收集的数据,并在聚合周期内独立运行。这将成为上游设备通信和本地设备处理要求方面的问题,然而,随着它的实现扩展到由数百万个异构无线设备组成的网络。

与此同时,设备到设备(D2D)通信正在成为5G和物联网的一部分,可以将数据处理从资源匮乏的设备本地卸载到资源丰富的设备[8]。此外,我们可以预期,对于特定应用,跨设备收集的数据集将包含不同程度的相似性,例如,在同一区域进行监视的无人机收集的图像[9],[10]。在多个设备上处理类似的数据分布会增加FedL的开销,并有机会提高效率。

受此启发,我们开发了一种新颖的方法,用于在FedL中进行数据卸载的智能设备采样。具体来说,我们制定了一个联合采样和数据卸载优化问题,其中期望对模型训练贡献最大的设备被采样以参与训练,而未被选中的设备可能会将数据传输给那些被选中的设备。这种数据卸载是根据节点之间估计的数据不相似度执行的,当观察到传输时,数据不相似度会被更新。我们表明,我们的方法产生了优于传统FedL的模型性能,同时显著降低了网络资源利用率。在我们由雾学习[7]、[11]、[12]等范式驱动的模型中,数据卸载仅发生在可信设备之间;有隐私问题的设备可以免于数据卸载

A.相关工作

为了提高FedL的通信效率,最近的工作集中在有效的编码设计上,以减少参数传输大小[13],[14],优化全局聚合的频率[15],[16],以及设备采样[17],[18]。我们的工作属于第三类。在这方面,大多数工作都假设了静态或均匀的设备选择策略,例如[5],[11],[12],[16]-[22],其中主服务器均匀随机或根据预先确定的抽样分布选择设备子集。基于无线信道特性的设备采样也是一个新兴的研究方向,特别是在蜂窝网络中作品[23]-[27]。相比之下,我们开发了一种采样技术,该技术适应设备资源的异质性和本地数据分布的重叠,这是当代无线边缘网络的关键特征。此外,我们还研究了基于设备数据分布效用的设备采样。具体来说,当与有限的关于每个设备对全局更新的瞬时贡献的设备抽样的文献进行比较时[28],我们引入了一个基于设备数据相似性的新视角。我们的方法利用了D2D通信在无线边缘的扩散[11],[12],通过D2D卸载使每个选定设备的本地数据多样化。因此,我们的工作考虑了FedL的采样和D2D卸载的新问题,并导致了实现中使用的新的解析收敛界和算法

值得一提的是,FedL中有两条并行的工作线,它们考虑节点数据分布之间的关系。一个是关于公平性[29],其目标是训练机器学习模型,而不使结果偏向于任何一个设备的分布,例如[30],[31]。另一种方法是利用迁移学习技术[32]在具有部分重叠的数据方(例如,公司或企业)之间构建模型[33]-[35]。我们的工作重点是一个根本不同的目标,即网络资源效率优化

B.激励玩具例子

考虑图2,其中五辆异构智能汽车与边缘服务器通信以训练目标检测模型。由于带宽有限,服务器只能利用5辆车中的2辆进行FedL训练,但需要在该网络内训练一个代表整个数据集的模型。每辆车的计算能力,即在一个聚合周期内处理的数据点的数量,在其旁边显示,数据相似度图中的边缘权重捕获了汽车局部数据之间的相似度。而不是使用统计距离度量[36],这在这种分布式场景中很难计算,数据相似度可以通过通勤路线和地理邻近度来估计[37]。此外,在支持2d的环境中,节点可以与受信任的邻居交换小数据样本,以在本地计算相似度并将其报告给服务器。

在图2中,如果服务器对计算能力最高的汽车,即A和B进行采样,由于它们之间的数据相似度很高,因此采样效率很低。此外,如果它对那些相似性最低的样本进行采样,即D和E,则局部模型将基于较低的计算能力,这通常会导致较低的准确性(并且在这种车辆场景中可能是灾难性的)。最优抽样因此,考虑到数据相似性和计算能力对联邦数据管理系统的运行至关重要。

我们进一步考虑D2D卸载如何导致采样汽车的局部分布增强。节点采样必须考虑不同车辆的邻域以及在这些邻域中卸载数据的能力:例如,在距离较近的车辆中,D2D在资源利用率方面更便宜。图2中可行的卸载拓扑用数据卸载图表示。考虑到C的高处理能力以及与相邻汽车E和D的数据差异,在d2d优化的解决方案中对C进行采样可以产生所有三辆汽车分布的复合。本文的目的是为一般无线边缘网络建立这些关系的模型,并优化由此产生的采样和卸载配置。

C.论文大纲和摘要

  • 我们制定了联合采样和D2D卸载优化问题,以在现实网络资源约束下最大化FedL模型精度(第2节)。
  • 我们对固定采样策略的卸载子问题的理论分析得出了FedL在任意数据采样策略下收敛的一个新的上界(第3节)。利用这个上界,我们得到了卸载策略的一个有效的顺序凸优化器。
  • 我们提出了一种新的基于ml的方法,该方法可以学习采样和卸载的期望组合(第4节)。我们将网络结构和卸载方案封装到模型特征中,并学习到采样策略的映射,从而最大化预期的FedL精度
  • 我们通过使用无线物联网设备测试平台的网络参数对真实世界的机器学习任务进行实验来评估我们的方法(第V节)。我们的结果表明,在所有设备上训练的模型精度都超过了FedL,同时显著降低了处理要求.

六、结论与未来工作

本文提出了一种新的方法来解决FedL的联合采样和D2D卸载优化问题。通过对卸载子问题的理论分析,得到了FedL的新的收敛界,并得到了一个序列凸优化求解器。然后,我们开发了一种基于gcn的算法,该算法通过学习网络属性、卸载拓扑、采样集和FedL精度之间的关系来确定采样策略。我们使用来自测试平台的真实数据集和物联网测量的实现表明,与其他几种算法(包括使用所有设备的FedL)相比,我们的方法在处理的数据点、训练速度和最终模型精度方面取得了显着改进。未来的研究将考虑在FedL上整合现实网络特征。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值