利用 Hough 变换处理量测得到的含杂波的二维坐标,解决多目标航迹起始问题(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

2.1 标准Hough变换

2.2 修正Hough变换

2.3 序列Hough变换

🎉3 参考文献

🌈4 Matlab代码、文档讲解


💥1 概述

航迹起始是航迹处理中的首要问题,在各种航迹处理的情况下都存在,对于多目标航迹处理来说,航迹起始是第一步,是进行航迹跟踪的基础。 由于被探测目标一般都是由远到近的出现在搜索雷达的有效探测范围内的,在航迹起始时,目标一般距离雷达较远,此时雷达分辨力低、测量精度差,加之真假目标的出现无真正的统计规律,因此在搜索雷达数据处理技术中,航迹起始问题是一个难题。现有的航迹起始算法可分为顺序处理技术和批处理技术两大类。通常,顺序数据处理技术适用于弱杂波环境中的航迹起始,主要包括启发式规则方法和基于逻辑方法;批处理技术则更适用于强杂波环境,主要包括 Hough 变换等方法。基于逻辑的方法在虚警概率比较低的情况下,起始航迹的效果比较好,但在复杂环境下虚假航迹比较多;Hough 变换法则适用于强杂波背景下航迹成直线的环境,但是Hough 变换法通常需要多次的扫描才能较好地起始航迹,且计算量大不符合工程应用的需要。

低信噪比、低信杂比下的航迹起始是多目标航迹起始的关键问题。Hough 变换具有对局部缺损的不敏感性、对随机噪声的鲁棒性以及适于并行处理、实时应用等特点,特别史和解决多目标航迹起始问题。本文对 Hough 变换航迹起始算法进行了研究,主要工作如下:

1.概述了主要的航迹起始方法,介绍了 Hough 变换基本原理、Hough 变换的特点,指出了 Hough 变换在航迹起始中存在的问题。

2.研究与分析了标准 Hough 变换、修正 Hough 变换和序列 Hough 变换三种典型航迹起始算法。通过仿真分析,总结出每种算法的适用环境。

1962 年,Paul Hough 提出了 Hough 变换法,它是实现图像边缘检测的一种有效方法。其基本思想是将图像空间中的检测问题转换到参数空间,通过在参数空间里进行简单的累加统计完成检测任务,用大多数边界点满足的某种参数形式来描述图像的区域边界曲线。同时 Hough 变换也可以被描述为证据积累过程:图像空间中的任意数据点,通过变换函数的作用,在参数空间中,对所有可能经过这一数据点的图形对应的参数进行投票;所有数据点的投票在积累矩阵中进行积累,投票结束后,各积累单元的积累值表示所检测图形的参数为相应积累单元对应参数的概率的大小。因而对于被噪声干扰或间断区域边界的图像,Hough 变换具有很好的容错性和鲁棒性。

Hough 变换用于航迹起始具有以下特点:

(1)将量测空间中的检测问题转换到参数空间进行,具有很强的抗干扰能力,对随机噪声具有一定的鲁棒性;

(2)量测中的每一个点都参加“投票”,所以它特别适合并行处理;

(3)一种变换方程只对某一种特定的曲线进行检测,针对性强;

(4)不受空间和曲线形状的影响:广义 Hough 变换可以检测任意形状的曲线,三维空间 Hough 变换可以检测空间曲线。Hough 变换用于航迹起始具有以下优点:

(1)Hough 变换可以检测任意已知形状的曲线,从而能够起始某类特定航迹,作为先验信息,特定航迹的选定提高了信号相干累积的效率,避免了大量杂波引起的虚假航迹问题;

(2)Hough 变换不要求曲线连续或可导,并且对局部缺损和随机噪声鲁棒,适于低检测率和低量测精度下的起始;

(3)Hough 变换用于航迹起始不需要目标状态初值,可实现全自动起始。本文通过大量仿真实验体会到 Hough 变换航迹起始算法存在若干问题,严重地影响这航迹起始的性能,具体体现在:

(1)标准 Hough 变换的计算量庞大,并且需要很大的存储空间,在低信噪比环境下表现得特别明显,延长了航迹起始时间,达不到快速性起始的要求。

(2)Hough 变换航迹起始算法在提取航迹参数时一般使用阈值法,这就不可避免的出现航迹簇拥现象,即一个目标产生了参数近似的多条轨迹。如何选择峰值提取方法既能准确地提取峰值,同时又能有效地解决航迹簇拥现象,是亟待解决的问题。

(3)Hough 变换航迹起始算法应用于工程实际带来了诸多问题,如:实际系统中涉及参数众多,如何对这些参数进行全面有效地利用,是急需解决地问题;针对不同地起始环境应该研究不同地专用算法与之相匹配;实际系统中,很多参数地选取都不能由理论公式推导得出,而要通过大量得仿真实验得出。

详细文档讲解见第4部分。

📚2 运行结果

2.1 标准Hough变换

2.2 修正Hough变换

2.3 序列Hough变换

部分代码:

target=2;%目标数
n=15;%起始拍数
k=90;%sig分的个数
m=500;%p分的个数
Monte_Carlo=100;%Monte_Carlo仿真次数
L=150;%雷达量测距离
Pd=1;%检测概率

%目标起始坐标及速度
x1=40;y1=20;vx1=0.3;vy1=0.18;%单位km,km/s
x2=20;y2=80;vx2=0.3;vy2=-0.18;
Ts=4;%采样周期,单位s

success=zeros(Monte_Carlo,target);%目标航迹成功起始矩阵
fake(1:Monte_Carlo)=0;%目标航迹虚假起始矩阵
track_number(1:Monte_Carlo)=0;%总航迹起始数

N=0:n-1;
X1_init=x1+Ts*N*vx1;%真实航迹1
Y1_init=y1+Ts*N*vy1;
Y1_0=y1-vy1*x1/vx1;
offset(1)=Y1_0*cos(atan(abs(vy1)/abs(vx1)));%航迹1真实垂距
X2_init=x2+Ts*N*vx2;%真实航迹2
Y2_init=y2+Ts*N*vy2;
Y2_0=y2-vy2*x2/vx2;
offset(2)=Y2_0*cos(atan(abs(vy2)/abs(vx2)));%航迹2真实垂距

Np=1:k;
dNp=pi/k;%参数空间角度间隔
angle=(Np-1/2)*dNp;

dMp=6*0.1;%%参数空间垂距间隔

for monte=1:Monte_Carlo
    clear R Rn A0 P0 R X_za Y_za noisex noisey
    R = poissrnd(50,1,n);%每拍杂波个数,服从泊松分布
    Rn=R(1);
    X_za=unifrnd (0, 100, 1, R(1));%随机产生(x,y)坐标,服从0-100的均匀分布
    Y_za=unifrnd (0, 100, 1, R(1));
    for i=2:n
        X_za(Rn+1:Rn+R(i))=unifrnd (0, 100, 1, R(i));
        Y_za(Rn+1:Rn+R(i))=unifrnd (0, 100, 1, R(i));
        Rn=Rn+R(i);
    end

    noisex=normrnd(0,0.1,1,n);%x量测噪声
    noisey=normrnd(0,0.1,1,n);

    X1=X1_init+noisex;X2=X2_init+noisex;%实际量测
    Y1=Y1_init+noisey;Y2=Y2_init+noisey;

    A=zeros(k,2*m);%积累矩阵

    %航迹1 Hough变换
    for i=1:n
        for j=1:k
            P(i,j)=X1(i)*cos(angle(j))+Y1(i)*sin(angle(j));
        end
    end
    
    %航迹2 Hough变换
    for i=(n+1):(2*n)
        for j=1:k
            P(i,j)=X2(i-n)*cos(angle(j))+Y2(i-n)*sin(angle(j));
        end
    end

    %杂波的Hough变换
    for i=2*n+1:(2*n+Rn)
        for j=1:k
            P(i,j)=X_za(i-2*n)*cos(angle(j))+Y_za(i-2*n)*sin(angle(j));
        end
    end

    %对积累矩阵投票
    for i=1:k
        for j=1:2*m
            a=-L+(j-1)*dMp;
            b=-L+j*dMp;
           for h=1:2*n+Rn
               if (P(h,i)>=a && P(h,i)<b) 
                   A(i,j)=A(i,j)+1;
               end
           end
        end
    end

    %寻找投票数大于等于阈值的参数
    count=0;
    for i=1:k
        for j=1:2*m
            if A(i,j)>=Pd*n*0.95%阈值=检测概率*起始拍数*(0到1之间的值)
                count=count+1;
                P0(count)=-L+(j-1/2)*dMp;%存储符合要求的参数
                A0(count)=angle(i);%存储符合要求的参数
            end
        end
    end
    
    track_number(monte)=count;%记录每次Monte_Carlo仿真总航迹数
    
    %输出符合要求的参数
    for h=1:count
        flag=0;
        for din=1:target
            if abs(P0(h)-offset(din))<=3
                success(monte,din)=1;
                flag=1;
            end
        end
        if flag==0
            fake(monte)=fake(monte)+1;
        end
        fprintf('the value of P0 is %f;the value of A0 is %f\n',P0(h),A0(h));
    end
    fprintf('*****************************************\n');
    
    %绘图
    figure
    subplot(1,2,1)
    scatter(X1,Y1,5,'r');
    hold on
    scatter(X2,Y2,6,'*','r');
    hold on
    scatter(X_za,Y_za,3,'filled','g')
    hold on
    xlabel('x(km)');
    ylabel('y(km)');
    legend('真实航迹1','真实航迹2','杂波');
    title('量测图')
    axis([0 100 0 100])
    axis on

    subplot(1,2,2)
    scatter(X1,Y1,5,'r');
    hold on
    scatter(X2,Y2,6,'*','r');
    hold on
    scatter(X_za,Y_za,3,'filled','g')
    hold on
    for h=1:count
        X=0:1:100;
        YS=(P0(h)-X*cos(A0(h)))/(sin(A0(h)));
        plot(X,YS,'b');
        hold on
        xlabel('x(km)');
        ylabel('y(km)');
        legend('真实航迹1','真实航迹2','杂波','起始航迹');
        title('起始结果图')
        axis([0 100 0 100])
        axis on
    end
end

%计算航迹起始成功率
success_number=0;
for i=1:Monte_Carlo
    for j=1:target
        success_number=success_number+success(i,j);
    end
end
success_rate=success_number/(Monte_Carlo*target);
fprintf('the rate of the successful Track initialization is %f%%\n',success_rate*100);

%计算航迹虚假率

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

Shen Baoyin

🌈4 Matlab代码、文档讲解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值