💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
基于优化的自适应差分导纳算法的改进最大功率点跟踪研究听起来像是针对太阳能光伏系统或其他可再生能源系统的研究。这种研究可能涉及利用自适应差分导纳算法来实现最大功率点跟踪(MPPT),从而提高能源转换效率。
1. **算法优化**:改进自适应差分导纳算法的性能,使其能够更准确地跟踪光伏阵列的最大功率点。这可能涉及对算法参数进行调整或修改算法结构以适应不同条件下的动态变化。
2. **灵敏度分析**:通过对系统参数和环境条件的灵敏度分析,确定影响最大功率点跟踪性能的主要因素,并针对性地进行改进。
3. **鲁棒性改进**:增强算法的鲁棒性,使其在面对环境变化、光照条件波动或部分阴影等复杂情况下依然能够有效地跟踪最大功率点。
4. **多目标优化**:将最大功率点跟踪算法与其他目标(如提高系统稳定性、减少系统成本等)相结合,进行多目标优化,以实现更全面的性能提升。
5. **实验验证**:通过实验验证改进后的算法性能,验证其在实际光伏系统中的有效性和可行性。
这些改进可以通过理论分析、数值仿真以及实验验证等方法来完成,以提高光伏系统的能源利用效率和性能稳定性。
基于优化的自适应差分导纳技术,利用MATLAB软件开发了改进的最大功率点跟踪算法,用于可再生能源发电。一种基于优化的自适应差分导纳算法的改进最大功率点跟踪技术,这是一种非智能的最大功率点跟踪技术代码,可提高太阳能电池板向负载的功率传输。绘制的图表分为三个部分:(1)温度对太阳能电池板的影响,(2)辐照度(G)对太阳能电池板的影响,以及(3)验证结果,显示了开发模型与OADC模型在所产生的功率方面的差异。验证功率来自500W/m²和750W/m²。验证应显示新IAODC模型与OADC相比所产生的功率增加。
📚2 运行结果
部分代码:
%%%constant parameters
%%%%%%%%
%code for outputcurrent(I) with different value of voltage
q=1.602*10^-19;
k=1.3805*10^-23;
Rs=0.008;
n=200;
%Io=0.07;
Irs=0.07;
Ego=1.7622*10^-19;
A=1;
w=0.001;%% 1/1000
ki=-0.0045;%shunt circuit current temperature coefficient of the cell(/oC)
T=250;%(changing variable from 250-350 )
Tr=298;
Gr=1000;
G = 1000;%(change irradiance variable 500-1000)
%%%
Io = Irs*(((T/Tr)^3)*exp(((q*Ego)/(A*k))*((1/Tr)-(1/T))));
Isc=((A*n*k*T)./(q*Rs))*(log((1)+(w./Io)));
Iph =((Isc)+(ki.*(T-Tr))).*(G./Gr);
Voc=(((A*n*k*T)./(q)).*(log((Iph./Io)+1)));
V= 0:2.1758:Voc;
I=Iph-(Io.*(exp((q.*V)./(A*n*k*T)))-1);
plot(V,I);
grid on
xlabel('voltage')
ylabel('output current')
title('V-I characteristics')
%%%code for voltage maximum power point
input= 1;
output=0;
disp('iterate values till no more changes');
for z=1:20;
H= log(1+((q*input)/(A*n*k*T)));
% Vmpp = ((A*n*k*T)./q).*(log(((Iph/Io)-(H/Io))));
Vmpp = ((A*n*k*T)/q)*(log(Iph/Io)-H);
disp(input);
disp(Vmpp);
input = Vmpp;
end
%code for current maximum power point.
Impp=Iph-(Io.*(exp((q*Vmpp)./(A*n*k*T))-1));
%degradation code
ff=(Vmpp*Impp)./(Voc*Isc);
%code for di/dv known as slope.
slope = -((Io*q)/(A*n*k*T)).*((exp((V.*q)/(A*n*k*T))-1));
P=I.*V;
d= Impp./Vmpp
IE=(((Impp/Vmpp)+(slope)));
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]时语欣刘鸿鹏张伟.基于改进风力驱动优化算法的最大功率点跟踪控制研究[J].电气自动化, 2022, 44(6):16-18.
[2]陈仕彬,韩自奋,梁福波,等.基于改进PSA算法的光伏系统最大功率点跟踪技术研究[J].物联网技术, 2016, 6(11):3.DOI:CNKI:SUN:WLWJ.0.2016-11-020.
[3]陈娟,邱爱兵,戴伟,等.基于改进扰动观察法的最大功率点跟踪研究[J].南通大学学报:自然科学版, 2013, 12(1):5.DOI:10.3969/j.issn.1673-2340.2013.01.007.
[4]王秀玲,王昊赬.太阳能光伏系统中基于自适应控制的最大功率点跟踪方法研究[J].广东电力, 2012, 25(7):4.DOI:10.3969/j.issn.1007-290X.2012.07.003.