基于物理的模型,使用Cosserat杆理论对扭曲和盘绕致动器进行建模(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于物理的模型,使用Cosserat杆理论对扭曲和盘绕致动器进行建模

摘要:
扭曲和卷绕致动器(TCAs)最近成为各种机器人应用中一种有前景的人造肌肉,因为它们坚固、成本低且可定制。为了更好地促进应用,为不同类型的TCA(例如,自卷曲、自由行程、锥形等)建立通用和精确的模型至关重要。尽管最近提出了几种建模方法,但现有的模型要么无法捕捉到大变形过程中的非线性,要么无法对具有非均匀几何形状的TCA进行建模。在这项工作中,我们使用Cosserat杆理论建立了一个用于模拟TCA的通用框架,该框架可以捕捉大变形的非线性,并模拟具有非均匀几何形状的TCA。此外,我们证明现有方法是通用模型的特例。通过全面的静态和动态实验来验证所提出的模型,结果表明该模型比现有的模型更准确,特别是在TCA发生较大变形的情况下。鉴于TCAs的广泛应用,我们的通用模型可以帮助更好地设计、优化和控制由不同类型的TCAs驱动的系统/机器人/设备。

📚2 运行结果

部分代码:

    % This is the TCA static using constant E&G and ginores the conctat
    
    % The input
    mw = 30; % the weight hanged
    T = (25:5:160)'; % Temperature 
   
    % Geometry property     
    l_t =  175e-3; % Twistee fiber length
    r_start = 0.406e-3; % TCA diameter when it is made
    r_t = 0.22e-3; % twisted fiber radius
    alpha_star = 22.42/180*pi; % pitch angle
    n = l_t*cos(alpha_star)/(2*pi*r_start); % number of coils
    l_star = l_t*sin(alpha_star); %  TCA initial length
    r_star =  0.406e-3; % mm
  
    % Use 10 coils to accelerate the simulation.
    N_sim = 10; N_per_coil = 20; 
    Ns = N_per_coil*(N_sim); % Number of nodes   
    N_scale = n/N_sim; l_t = l_t/N_scale; 
    l_star = l_star/N_scale; 
    theta_bar_star = 4.71e+03; % rad/m
    
    % Material property
    E =  1.1980e+09; 
    G = 2.2177e+08;
    A_t = pi*r_t^2; I = pi*r_t^4/4;  J = pi*r_t^4/2;
    EI = E*I;   GJ = G*J;  GA = G*A_t;  EA = E*A_t;
    K = [EI, EI, GJ, GA, GA, EA]'; % using vector to speed up. 
    
    % Reference strains 
    xi_0 = [0; cos(alpha_star)^2/r_star; sin(2*alpha_star)/(2*r_star);  0; 0; 1]; 
    
    %Boundary Conditions
    p0 = [r_star; 0; 0];
    R0 = [ -1,             0,            0;
            0, sin(alpha_star), -cos(alpha_star);
            0,  -cos(alpha_star), -sin(alpha_star)];
    h0 = rotm2quat(R0)';
    Me = [0; 0; 0]; % momentum at the tip, N*mm
    Fe = [0; 0; 0]; % force at the tip 
     
    % Main Simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    
    % Initialization
    solinit = bvpinit(linspace(0,l_t,Ns),@init);
    options = bvpset('Stats','off','RelTol',1e-5, 'NMax', 5000);
    N_step = length(T); 
    N_f = 0; % number of frame
    l = ones(N_step, 1)*l_star;
    mg = mw/1000*9.8; % mw is the weight in grams
    Fe_range = linspace(0,mg, 30); 
    N_loading = length(Fe_range);
    % iterate to the equilibrium after hanging the weigth. 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

J. Sun and J. Zhao, "Physics-Based Modeling of Twisted-and-Coiled Actuators Using Cosserat Rod Theory," in IEEE Transactions on Robotics, vol. 38, no. 2, pp. 779-796, April 2022. 

🌈Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值