算法的时间复杂度

目录

一、算法效率

二、时间复杂度

2.1时间复杂度的概念

2.2大O渐进表示法

2.3常见时间复杂度计算举例


一、算法效率

        一个程序在执行时需要时间执行和占用内存空间,算法就是对时间和空间的计算,时间被称为时间复杂度,空间被称为空间复杂度。

        在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

二、时间复杂度

2.1时间复杂度的概念

定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

来通过一个例子计算出时间复杂度感受一下:

void Func1(int N)
{
	int count = 0;
	for (int i = 0; i < N; ++i)
	{
		for (int j = 0; j < N; ++j)
		{
			++count;
		}
	}

	for (int k = 0; k < 2 * N; ++k)
	{
		++count;
	}
	int M = 10;
	while (M--)
	{
		++count;
	}
	printf("%d\n", count);
}

Func1的基本执行次数:

第一个由i和j控制的嵌套循环,每层都循环N次,总循环N^2次;

而上面定义的count是可以忽略不记的,时间复杂度只会计算大概值,这些只执行了1次的语句可以不进行计算;

k循环循环了2*N次;

M循环循环了10次。

F(N) = N^2+2*N+10

但基本执行次数对于时间复杂度依旧是个精确值,时间复杂度一般使用大O渐进表示法来确定值。

2.2大O渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

推导大O阶方法:

1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

使用大O的渐进表示法以后,Func1的时间复杂度为:

N^2+2*N+10

N^2+2*N+1  //常数相由1取代

N^2  //只保留最高项

O(N^2)就是大O渐进表示法,时间复杂度是N^2

在上面的换算中我们认为N^2为最高项,舍去了那些对结果影响不大的项,简洁明了的表示出了执行次数。

认为N^2为最高项是因为有些算法的时间复杂度存在最好、平均和最坏情况:

  •  最坏情况:任意输入规模的最大运行次数(上界)
  •  平均情况:任意输入规模的期望运行次数
  •  最好情况:任意输入规模的最小运行次数(下界)

上面N是可以取任意值的10,1000,1000万……,都有可能没有上界。在实际中一般情况关注的是算法的最坏运行情况,所以在有不确定值时,都会取那个值的相关的最高项。

2.3常见时间复杂度计算举例

实例1:

void Func2(int N)
{
	int count = 0;
	for (int k = 0; k < 2 * N; ++k)
	{
		++count;
	}
	int M = 10;
	while (M--)
	{
		++count;
	}
	printf("%d\n", count);
}

k循环执行次数为2N次;M循环执行10次。

基本执行次数:F(N) = 2*N+10

时间复杂度:O(N)   //取最高项,同时舍去相乘的常数

实例2:

void Func3(int N, int M)
{
	int count = 0;
	for (int k = 0; k < M; ++k)
	{
		++count;
	}
	for (int k = 0; k < N; ++k)
	{
		++count;
	}
	printf("%d\n", count);
}

这个很直观,F(N) = M+N;

有两个未知值时,可以都写入O里。

时间复杂度:O(N+M)

实例3:

void Func4(int N)
{
	int count = 0;
	for (int k = 0; k < 100; ++k)
	{
		++count;
	}
	printf("%d\n", count);
}

F(N) = 100

时间复杂度:O(1)

实例4:

const char* strchr(const char* str, int character)
{
	assert(str);
	while (*str)
	{
		if (*str == character)
		{
			return str;
		}
		str++;
	}
	return NULL;
}

时间复杂度:O(N)

以最坏的情况计算,里面没有character,需要遍历一遍数组,而数组的大小是不确定的。

实例5:

void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
			break;
	}
}

计算一些复杂代码的时间复杂度最重要的是先读懂这段代码的思路。

这个函数是将一个整形数组从后向前判断,前一项是否大于后一项,是则交换两数,否则直接跳出循环,结束程序。

我们直接考虑最坏情况,它将整个数组都交换了,最后形成了一个非降序数组。也就是一个反向对数组操作的冒泡。

基本执行次数:i循环每次执行end次,也就是第一层循环内每次都会执行end次循环,而每次循环end都--,执行次数就是一个等差数列的和。

F(N) = end+(end-1)+(end-2)+...+2+1=(end+1)*end/2

时间复杂度:O(N^2)

实例6:

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
	if (0 == N)
		return 1;

	return Fac(N - 1) * N;
}

这个函数在不考虑递归时时间复杂度是O(1),递归是将这个函数重新调用,调用几次就有几个O(1),将所有O(1)加起来就是它递归后的时间复杂度。只需要计算函数调用了几次就是它的时间复杂度。

上面很明显每次递归N-1,N==0时不再递归,就是调用了N+1次。

        Fac(N)->Fac(N-1)->Fac(N-2)->...->Fac(3)->Fac(2)->Fac(1)->Fac(0)

时间复杂度:O(N)

实例7:

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
	if (N < 3)
		return 1;

	return Fib(N - 1) + Fib(N - 2);
}

这个函数同上在不考虑递归时时间复杂度是O(1)。

函数调用的大概次数:

2^0              Fib(N)

2^1              Fib(N-1)        Fib(N-2)

2^2              Fib(N-2)    Fib(N-3)        Fib(N-3)    Fib(N-4)

...

...

...

2^(N-4)        Fib(4)        ……

2^(N-3)        Fib(3)        Fib(2)        ……

2^(N-2)        Fib(2)        Fib(1)

将调用次数加起来就是基本执行次数:F(N) = 1+2^1+2^2+...+2^(N-2)=2^(N-1)+1

计算出来的次数会跟实际次数有些偏差,但时间复杂度本就计算的是大概,所以不需要太过在意这些。

时间复杂度:O(2^N)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值