【深度学习 常用代码片段 汇总】

# 忽略警告信息的代码

import warnings

warnings.filterwarnings("ignore")

gpu是否可用

import torch

# 检查CUDA是否可用
if torch.cuda.is_available():
    print("CUDA is available!")
    # 获取当前默认的CUDA设备
    device = torch.device('cuda')
    print(f"Default CUDA device: {device}")
    # 获取CUDA设备的数量
    print(f"Number of CUDA devices: {torch.cuda.device_count()}")
    # 获取第一个CUDA设备的名称
    print(f"Name of first CUDA device: {torch.cuda.get_device_name(0)}")
else:
    print("CUDA is not available.")

    # 设置设备为GPU或CPU
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值