自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 通道注意力:SKNet(Select Kernel Net)选择内核网络---SENet的孪生兄弟

SKNet类似于SENet,也是一种轻量级、容易集成的有效通道注意力机制SKNet的核心在于使用可选择性的多尺度卷积核来捕捉多尺度特征。SKNet引入了一个选择模块,简单理解就是,SKNet先进行不同感受野的卷积得到不同感受野的输出特征图,然后再通过这个选择模块学习这些不同感受野的输出特征图应该占据的权重。

2024-10-13 00:37:50 1974

原创 通道注意力:SENet(Squeeze-and-Excitation Net)压缩-激励网络

SENet利用不同通道之间的关系进行加权,称为通道注意力。最后一届ImageNet冠军(2017)。 将前2名的错误率降低到了2.251%,比2016年冠军相对提高了25%。 + SE块的结构很简单,可以直接在目前几乎所有的模型结构中使用,通过用SE对应的组件替换组件,可以有效地增强性能。SE块在计算上也是轻量级的,只会略微增加模型复杂性和计算负担。

2024-10-12 00:13:56 1502

原创 机器人基础--数学基础--矩阵表示-空间变换

在机器人学中,我们需要常常用到位置矢量、平面和坐标系等概念,而他们的表示主要就涉及矩阵以及矩阵运算。在神经网络中,矩阵相乘常常有对目标向量进行升维或降维的含义,但是在机器人基础中,乘以一个矩阵还有一个含义,就是可以理解为对坐标系的变换。

2024-10-14 15:29:02 1225

原创 旋转矩阵的具体推理--清晰易懂-绕轴旋转

首先对于一个坐标系的旋转变换,无论他怎么转,我们可以直接拆分为绕3个轴旋转,绕x轴旋转、绕y轴旋转、绕z轴旋转。​为表示目标坐标系{B}的x轴。之后我们又知道旋转矩阵本身就是目标坐标系的坐标轴在参考坐标系中的投影矩阵。那么如上图,对于绕x轴旋转,x轴本身是不会改变的,所以我们对其只需要关注。表示目标坐标系{B}的x轴在参考坐标系{A}的x轴上的投影。的A表示参考坐标系{A},B表示被描述的坐标系{B}。​表示目标坐标系{B}的x轴在参考坐标系{A}的投影,平面,对于z轴旋转,我们只需要关注。

2024-10-14 05:57:07 4418 3

原创 考研干货笔记

[toc]考研干货个人笔记)这个只是个人简单的笔记可能有错误,,如果你意外看到了,可能会对你产生误导。

2024-10-13 21:58:02 314

原创 分组卷积(Group Convolution)快速简单理解

特殊的,如果分割的层数等于输入特征图的通道数(即M=6),那么也叫做。维度为[4,4,6],其中6是通道数。再分别进行卷积,最后再按照通道叠加输出的。通过图像我们可以看到分组卷积就是把输入。按照通道分为M个的不同的特征图。话不多说,直接上图理解。,然后对每一个特征图。

2024-10-12 18:29:57 1128

原创 Dilated Convolution(膨胀卷积、空洞卷积、扩张卷积、)学习笔记

别名:膨胀卷积、扩张卷积。最早起源于语义分割。引入了超参数扩张率(dilation rate),定义为卷积核各个值之间的距离。以3*3卷积为例,如下图:对于以上三张图,分别对应扩张率为1,2,3,感受野分别为3,5,7(灰色区域)。k′kk−1×d−1其中,k′表示等效的普通卷积核的大小,k表示空洞卷积核的大小,d表示膨胀率对于图a,k3d1得到k′32×1−13对于图b,k3d2得到k′32×2−15。

2024-10-11 12:59:03 4514

原创 机器人基础-自由度及其简单计算

自由度,机械臂的自由度计算公式推导以及例题

2024-10-11 00:00:24 6734 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除