对于一个机器人的手腕,一般要求实现对空间坐标轴X、Y、Z的旋转运动,分别是翻/回转(Roll)、俯仰(Pitch)、偏转(Yaw)。如下图,绕X轴旋转称为偏转,绕Y轴旋转成为俯仰,绕Z轴称为翻/回转。
1.自由度(DOF)
对于一个刚体的自由度,一般分为两种情况,一种是平面上的刚体,另一种是空间中的刚体。
对于平面中的刚体,有3个自由度,分别代表着2个位置,1个角度。例子:坐标轴上的硬币。
如图,对于坐标系中的硬币,它可以沿着x轴和y轴的方向移动,也可以自身旋转(即硬币上人物的目光方向)。
对于空间中的物体,有6个自由度,分别代表着3个位置,3个角度。
可以理解为在空间中观察飞机,三个位置分别表示距离以观察位置为空间坐标系的x,y,z轴的距离。对于角度,分别是飞机绕如下图所示的三个轴旋转,也可理解为飞机的俯仰角(上下点头)、滚转角(左右摆头)、偏航角(左右摇头)。
故对于刚体的自由度,一般有:
D O F = { 3 , 平面上; 6 , 空间中; DOF=\begin{cases} 3, & 平面上;\\ 6, & 空间中; \end{cases} DOF={ 3,6,平面上;空间中;
2.自由度的计算
首先我们假设一个刚体的自由度为s,那么n个刚体就是就是 s × n s\times n s×n。
对于一个机械臂,我们假设他有n的links(包括基底),那么由于基底与地面相连,他的自由度为0,所以在我们未引入joint时,此时机械臂的自由度为 s × ( n − 1 ) s\times (n-1) s×(n−1)。
此时,我们引入p个joint(假设如图所示的第i个joint引入的约束为 c i c_i ci),那么有:
d o f = s × ( n − 1 ) − ∑ i = 1 p c i dof=s\times (n-1)-\sum^{p}_{i=1}{c_i} dof=s×(n−1)−