模型下载::模型下载
注意此模型下载的是只有api的,如果需要页面网站的需要将https://funaudiollm.github.io/cosyvoice2/中的webui.py加入到上述模型下
官方实例文档:https://funaudiollm.github.io/cosyvoice2/
## �� CosyVoice ��
**CosyVoice 2.0**:[演示](https://funaudiollm.github.io/cosyvoice2/);[论文](https://arxiv.org/abs/2412.10117);[魔搭社区](https://www.modelscope.cn/studios/iic/CosyVoice2-0.5B);[HuggingFace](https://huggingface.co/spaces/FunAudioLLM/CosyVoice2-0.5B)
**CosyVoice 1.0**:[演示](https://fun-audio-llm.github.io);[论文](https://funaudiollm.github.io/pdf/CosyVoice_v1.pdf);[魔搭社区](https://www.modelscope.cn/studios/iic/CosyVoice-300M)
## 亮点�
**CosyVoice 2.0** 已经发布!与 1.0 版本相比,新版本提供了更准确、更稳定、更快以及更好的语音生成能力。
### 多语言
- **支持的语言**:中文、英文、日语、韩语、中文方言(粤语、四川话、上海话、天津话、武汉话等)
- **跨语言与混合语言**:支持跨语言和代码切换场景下的零样本语音克隆。
### 超低延迟
- **双向流支持**:CosyVoice 2.0 集成了离线和流式建模技术。
- **首包快速合成**:在保持高质量音频输出的同时,实现了低至 150 毫秒的延迟。
### 高精度
- **发音改进**:与 CosyVoice 1.0 相比,发音错误减少了 30% 到 50%。
- **基准测试成果**:在 Seed - TTS 评估集的困难测试集中取得了最低的字符错误率。
### 强稳定性
- **音色一致性**:确保零样本和跨语言语音合成的可靠语音一致性。
- **跨语言合成**:与 1.0 版本相比有显著改进。
### 自然体验
- **增强的韵律和音质**:合成音频的对齐性得到改善,MOS 评估分数从 5.4 提高到 5.53。
- **情感和方言灵活性**:现在支持更细粒度的情感控制和口音调整。
## 路线图
- [x] 2024/12
- [x] 25Hz CosyVoice 2.0 发布
- [x] 2024/09
- [x] 25Hz CosyVoice 基础模型
- [x] 25Hz CosyVoice 语音转换模型
- [x] 2024/08
- [x] 重复感知采样(RAS)推理以提高大语言模型的稳定性
- [x] 支持流式推理模式,包括键值缓存(kv cache)和缩放点积注意力(sdpa)以优化实时因子(RTF)
- [x] 2024/07
- [x] 支持流匹配训练
- [x] 当 ttsfrd 不可用时支持 WeTextProcessing
- [x] Fastapi 服务器和客户端
## 安装
**克隆并安装**
- 克隆仓库
``` sh
git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git
# 如果由于网络故障未能克隆子模块,请运行以下命令,直到成功为止
cd CosyVoice
git submodule update --init --recursive
```
- 安装 Conda:请参阅 https://docs.conda.io/en/latest/miniconda.html
- 创建 Conda 环境:
``` sh
conda create -n cosyvoice -y python=3.10
conda activate cosyvoice
# pynini 是 WeTextProcessing 所需的,使用 conda 安装它,因为它可以在所有平台上运行。
conda install -y -c conda-forge pynini==2.1.5
pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
# 如果你遇到 sox 兼容性问题
# Ubuntu
sudo apt-get install sox libsox-dev
# CentOS
sudo yum install sox sox-devel
```
**模型下载**
我们强烈建议你下载我们预训练的 `CosyVoice2 - 0.5B`、`CosyVoice - 300M`、`CosyVoice - 300M - SFT`、`CosyVoice - 300M - Instruct` 模型以及 `CosyVoice - ttsfrd` 资源。
``` python
# SDK 模型下载
from modelscope import snapshot_download
snapshot_download('iic/CosyVoice2-0.5B', local_dir='pretrained_models/CosyVoice2-0.5B')
snapshot_download('iic/CosyVoice-300M', local_dir='pretrained_models/CosyVoice-300M')
snapshot_download('iic/CosyVoice-300M-25Hz', local_dir='pretrained_models/CosyVoice-300M-25Hz')
snapshot_download('iic/CosyVoice-300M-SFT', local_dir='pretrained_models/CosyVoice-300M-SFT')
snapshot_download('iic/CosyVoice-300M-Instruct', local_dir='pretrained_models/CosyVoice-300M-Instruct')
snapshot_download('iic/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice-ttsfrd')
```
``` sh
# git 模型下载,请确保已安装 git lfs
mkdir -p pretrained_models
git clone https://www.modelscope.cn/iic/CosyVoice2-0.5B.git pretrained_models/CosyVoice2-0.5B
git clone https://www.modelscope.cn/iic/CosyVoice-300M.git pretrained_models/CosyVoice-300M
git clone https://www.modelscope.cn/iic/CosyVoice-300M-25Hz.git pretrained_models/CosyVoice-300M-25Hz
git clone https://www.modelscope.cn/iic/CosyVoice-300M-SFT.git pretrained_models/CosyVoice-300M-SFT
git clone https://www.modelscope.cn/iic/CosyVoice-300M-Instruct.git pretrained_models/CosyVoice-300M-Instruct
git clone https://www.modelscope.cn/iic/CosyVoice-ttsfrd.git pretrained_models/CosyVoice-ttsfrd
```
可选地,你可以解压 `ttsfrd` 资源并安装 `ttsfrd` 包,以获得更好的文本规范化性能。
请注意,此步骤不是必需的。如果你不安装 `ttsfrd` 包,我们将默认使用 WeTextProcessing。
``` sh
cd pretrained_models/CosyVoice-ttsfrd/
unzip resource.zip -d .
pip install ttsfrd_dependency-0.1-py3-none-any.whl
pip install ttsfrd-0.4.2-cp310-cp310-linux_x86_64.whl
```
**基本用法**
我们强烈建议使用 `CosyVoice2 - 0.5B` 以获得更好的性能。
请参考以下代码以了解每个模型的详细用法。
``` python
import sys
sys.path.append('third_party/Matcha-TTS')
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
from cosyvoice.utils.file_utils import load_wav
import torchaudio
```
**CosyVoice2 用法**
```python
cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=False, load_trt=False, fp16=False)
# 注意:如果你想复现 https://funaudiollm.github.io/cosyvoice2 上的结果,请在推理时添加 text_frontend=False
# 零样本用法
prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
# 细粒度控制,有关支持的控制,请查看 cosyvoice/tokenizer/tokenizer.py#L248
for i, j in enumerate(cosyvoice.inference_cross_lingual('在他讲述那个荒诞故事的过程中,他突然[laughter]停下来,因为他自己也被逗笑了[laughter]。', prompt_speech_16k, stream=False)):
torchaudio.save('fine_grained_control_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
# 指令用法
for i, j in enumerate(cosyvoice.inference_instruct2('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '用四川话说这句话', prompt_speech_16k, stream=False)):
torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
# 双向流用法,你可以使用生成器作为输入,当使用文本大语言模型作为输入时,这很有用
# 注意:你仍然需要一些基本的句子分割逻辑,因为大语言模型无法处理任意长度的句子
def text_generator():
yield '收到好友从远方寄来的生日礼物,'
yield '那份意外的惊喜与深深的祝福'
yield '让我心中充满了甜蜜的快乐,'
yield '笑容如花儿般绽放。'
for i, j in enumerate(cosyvoice.inference_zero_shot(text_generator(), '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
```
**CosyVoice 用法**
```python
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-SFT', load_jit=False, load_trt=False, fp16=False)
# SFT 用法
print(cosyvoice.list_available_spks())
# 将 stream 设置为 True 以进行分块流推理
for i, j in enumerate(cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女', stream=False)):
torchaudio.save('sft_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M') # 或者改为 pretrained_models/CosyVoice-300M-25Hz 以进行 25Hz 推理
# 零样本用法,<|zh|><|en|><|jp|><|yue|><|ko|> 分别表示中文、英文、日语、粤语、韩语
prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
# 跨语言用法
prompt_speech_16k = load_wav('./asset/cross_lingual_prompt.wav', 16000)
for i, j in enumerate(cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.', prompt_speech_16k, stream=False)):
torchaudio.save('cross_lingual_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
# 语音转换用法
prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)
```