自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

机器学习之心的博客,关注并私信文章链接,获取对应文章源码和数据。

机器学习之心的博客,擅长时序、回归、分类、聚类、降维、优化和评价等程序设计和案例分析,文章底部有博主联系方式。

  • 博客(2795)
  • 资源 (54)
  • 收藏
  • 关注

原创 机器学习之心,无小号,已认证博客专家,完整程序代码地址,2024年度总结

机器学习之心,无小号,已认证博客专家,完整程序代码地址,2024年度总结

2024-12-27 22:13:10 444 2

原创 程序全家桶 | 机器学习之心【Python机器学习/深度学习程序全家桶】

程序全家桶 | 机器学习之心【Python机器学习/深度学习程序全家桶】

2024-02-16 22:43:49 1396 2

原创 机器学习之心荣获2023博客之星TOP50 | 感谢CSDN

机器学习之心荣获2023博客之星TOP50 | 感谢CSDN

2024-01-11 18:12:49 870 2

原创 继续声明 | 连声明都抄,谁抄袭谁,一目了然,现在竟然恬不知耻的反咬一口。

继续声明 | 连声明都抄,谁抄袭谁,一目了然,现在竟然恬不知耻的反咬一口。

2023-12-31 21:53:08 1255 1

原创 声明 | 为打击假冒账号、恶意抄袭账号等诈骗活动,提升本账号权威,本博主特此郑重声明

声明 | 为打击假冒账号、恶意抄袭账号等诈骗活动,提升本账号权威,本博主特此郑重声明

2023-12-26 10:19:53 978 2

原创 郑重声明 | 【机器学习之心】无小号,打者本人旗号干活的其他号,本人概不负责,可笑,未经过我同意就成你们的合作账号了?

郑重声明 | 【机器学习之心】无小号,打者本人旗号干活的其他号,本人概不负责,可笑,未经过我同意就成你们的合作账号了?

2023-12-13 12:31:54 425

原创 粉丝福利 | CSDN机器学习之心博主粉丝福利

粉丝福利 | 机器学习之心程序和数据获取粉丝福利

2023-08-03 12:26:24 1448 8

原创 程序获取 | 机器学习之心机器学习/深度学习程序和数据获取方式

程序获取 | 机器学习之心机器学习/深度学习程序和数据获取方式

2022-10-25 16:17:04 4703 1

原创 基于Matlab的饮料满瓶检测图像处理

基于Matlab的饮料满瓶检测图像处理

2025-08-21 23:24:50 682 1

原创 SHAP分析!NRBO-Transformer-LSTM回归预测SHAP分析,深度学习可解释分析!

SHAP分析!NRBO-Transformer-LSTM回归预测SHAP分析,深度学习可解释分析!

2025-08-21 23:20:54 428

原创 Transformer-LSTM预测 | 基于Transformer-LSTM的多变量单步时间序列预测(Matlab)

Transformer-LSTM预测 | 基于Transformer-LSTM的多变量单步时间序列预测(Matlab)

2025-08-20 23:30:54 13

原创 CNN-GRU-Attention、CNN-GRU、GRU三模型多变量时序光伏功率预测三模型多变量时序光伏功率预测

CNN-GRU-Attention、CNN-GRU、GRU三模型多变量时序光伏功率预测三模型多变量时序光伏功率预测

2025-08-20 22:27:08 661

原创 未发表,高水平论文首选!OCSSA-VMD-Transformer-GRU特征提取+组合模型轴承故障诊断

未发表,高水平论文首选!OCSSA-VMD-Transformer-GRU特征提取+组合模型轴承故障诊断

2025-08-19 22:15:26 337

原创 CNN-LSTM-Attention、CNN-LSTM、LSTM三模型多变量时序光伏功率预测

CNN-LSTM-Attention、CNN-LSTM、LSTM三模型多变量时序光伏功率预测

2025-08-19 22:11:29 1061

原创 198种组合算法+双重优化BP神经网络+SHAP分析+新数据预测!机器学习可解释分析,粉丝必备!

198种组合算法+双重优化BP神经网络+SHAP分析+新数据预测!机器学习可解释分析,粉丝必备!

2025-08-19 10:42:27 1564

原创 CNN-BiLSTM-Attention、CNN-BiLSTM、BiLSTM三模型多变量时序光伏功率预测

CNN-BiLSTM-Attention、CNN-BiLSTM、BiLSTM三模型多变量时序光伏功率预测

2025-08-18 22:14:54 896

原创 OCSSA-VMD-Transformer-BiLSTM特征提取+组合模型轴承故障诊断

OCSSA-VMD-Transformer-BiLSTM特征提取+组合模型轴承故障诊断

2025-08-18 22:01:03 307

原创 OCSSA-VMD-Transformer-LSTM轴承故障诊断,特征提取+组合模型!

OCSSA-VMD-Transformer-LSTM轴承故障诊断,特征提取+组合模型!

2025-08-17 23:43:43 232

原创 SHAP分析!NRBO-Transformer-BiLSTM回归预测SHAP分析,深度学习可解释分析!

SHAP分析!NRBO-Transformer-BiLSTM回归预测SHAP分析,深度学习可解释分析!

2025-08-17 23:38:55 833

原创 锂电池SOH预测 | Matlab基于KPCA-PLO-Transformer-LSTM的的锂电池健康状态估计(锂电池SOH预测),附锂电池最新文章汇集

锂电池SOH预测 | Matlab基于KPCA-PLO-Transformer-LSTM的的锂电池健康状态估计(锂电池SOH预测),附锂电池最新文章汇集

2025-08-17 22:28:01 940

原创 回归预测 | Matlab实现GWO-BP灰狼算法优化BP神经网络回归预测

回归预测 | Matlab实现GWO-BP灰狼算法优化BP神经网络回归预测

2025-08-16 22:27:07 113

原创 回归预测 | Matlab实现WOA-BP鲸鱼算法优化BP神经网络回归预测

回归预测 | Matlab实现WOA-BP鲸鱼算法优化BP神经网络回归预测

2025-08-16 22:23:06 127

原创 回归预测 | Matlab实现SAO-BP雪消融算法优化BP神经网络回归预测

回归预测 | Matlab实现SAO-BP雪消融算法优化BP神经网络回归预测

2025-08-16 22:20:23 22

原创 分类预测 | MATLAB实现KOA-CNN-BiLSTM开普勒算法优化卷积双向长短期记忆神经网络数据分类预测

分类预测 | MATLAB实现KOA-CNN-BiLSTM开普勒算法优化卷积双向长短期记忆神经网络数据分类预测

2025-08-14 23:47:29 301

原创 克里金模型+多目标优化+多属性决策!Kriging+NSGAII+熵权TOPSIS!

克里金模型+多目标优化+多属性决策!Kriging+NSGAII+熵权TOPSIS!

2025-08-14 23:44:30 972

原创 顶级SCI优化!TOC-Transformer-GRU-ABKDE,一区算法龙卷风算法优化组合模型改进核密度估计区间概率预测

顶级SCI优化!TOC-Transformer-GRU-ABKDE,一区算法龙卷风算法优化组合模型改进核密度估计区间概率预测

2025-08-13 23:02:25 1164

原创 CPO-LSSVM冠豪猪算法优化最小二乘支持向量机分类预测+特征贡献SHAP分析,通过特征贡献分析增强模型透明度,Matlab代码实现,引入SHAP方法打破黑箱限制,提供全局及局部双重解释视角

CPO-LSSVM冠豪猪算法优化最小二乘支持向量机分类预测+特征贡献SHAP分析,通过特征贡献分析增强模型透明度,Matlab代码实现,引入SHAP方法打破黑箱限制,提供全局及局部双重解释视角

2025-08-13 22:55:40 1186

原创 回归预测 | Matlab实现CNN-BiLSTM-self-Attention多变量回归预测

回归预测 | Matlab实现CNN-BiLSTM-self-Attention多变量回归预测

2025-08-12 23:23:17 473

原创 NGO-LSSVM北方苍鹰算法优化最小二乘支持向量机分类预测+特征贡献SHAP分析,通过特征贡献分析增强模型透明度,Matlab代码实现,引入SHAP方法打破黑箱限制,提供全局及局部双重解释视角

NGO-LSSVM北方苍鹰算法优化最小二乘支持向量机分类预测+特征贡献SHAP分析,通过特征贡献分析增强模型透明度,Matlab代码实现,引入SHAP方法打破黑箱限制,提供全局及局部双重解释视角

2025-08-12 22:37:55 831

原创 OCSSA-VMD-Transformer轴承故障诊断,特征提取+编码器!

OCSSA-VMD-Transformer轴承故障诊断,特征提取+编码器!

2025-08-11 22:07:06 378

原创 SABO-VMD-GCN轴承故障诊断,特征提取+图卷积神经网络!

SABO-VMD-GCN轴承故障诊断,特征提取+图卷积神经网络!

2025-08-11 22:03:02 461

原创 无人机集群协同三维路径规划,采用梦境优化算法(DOA)实现,Matlab代码

无人机集群协同三维路径规划,采用梦境优化算法(DOA)实现,Matlab代码

2025-08-10 23:45:44 576

原创 锂电池SOH预测 | 第35讲 Matlab基于BiLSTM的锂电池健康状态估计(锂电池SOH预测),附锂电池最新文章汇集

锂电池SOH预测 | 第35讲 Matlab基于BiLSTM的锂电池健康状态估计(锂电池SOH预测),附锂电池最新文章汇集

2025-08-10 20:49:34 679

原创 LSSVM最小二乘支持向量机分类预测+特征贡献SHAP分析,通过特征贡献分析增强模型透明度,Matlab代码实现,引入SHAP方法打破黑箱限制,提供全局及局部双重解释视角

LSSVM最小二乘支持向量机分类预测+特征贡献SHAP分析,通过特征贡献分析增强模型透明度,Matlab代码实现,引入SHAP方法打破黑箱限制,提供全局及局部双重解释视角

2025-08-10 20:46:41 1013

原创 基于云-TOPSIS法的综合评价

基于云-TOPSIS法的综合评价

2025-08-10 20:43:32 309

原创 故障诊断 | VMD-CNN-LSTM西储大学轴承故障诊断附MATLAB代码

故障诊断 | VMD-CNN-LSTM西储大学轴承故障诊断附MATLAB代码

2025-08-10 14:15:57 177

原创 CNN-BiGRU卷积双向门控循环单元分类预测+特征贡献SHAP分析,通过特征贡献分析增强模型透明度,Matlab代码实现,引入SHAP方法打破黑箱限制,提供全局及局部双重解释视角

CNN-BiGRU卷积双向门控循环单元分类预测+特征贡献SHAP分析,通过特征贡献分析增强模型透明度,Matlab代码实现,引入SHAP方法打破黑箱限制,提供全局及局部双重解释视角

2025-08-10 14:10:40 599

原创 故障诊断 | VMD-CNN-BiLSTM西储大学轴承故障诊断附MATLAB代码

故障诊断 | VMD-CNN-BiLSTM西储大学轴承故障诊断附MATLAB代码

2025-08-10 13:46:24 223

原创 时序分解 | MATLAB实现GRO-VMD淘金算法优化变分模态分解

时序分解 | MATLAB实现GRO-VMD淘金算法优化变分模态分解

2025-08-09 22:36:41 108

原创 时序分解 | MATLAB实现SAO-VMD雪消融算法优化变分模态分解

时序分解 | MATLAB实现SAO-VMD雪消融算法优化变分模态分解

2025-08-09 22:30:08 175

风电功率预测,EMD-LSTM风电功率预测(Pytorch完整源码和数据)

1.风电功率预测,EMD-LSTM风电功率预测(单变量)(Pytorch完整源码和数据) 2.数据集:风电功率数据集,已经处理好; 3.环境准备:python 3.8 , pytorch 1.8 版本及其以上,代码格式ipynb文件,可读性强; 4.模型描述:EMD-LSTM模型提升了风电功率预测精度。 5.领域描述:风电功率预测是指通过建立数学模型,以风电场的历史数据为输入,预测风电场未来一段时间内的有功功率输出。其目的是减少风能的不确定性,提高电网的稳定性和经济性,同时优化电力调度和市场交易。 6.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。

2025-07-13

风电功率预测,LSTM风电功率预测(Pytorch完整源码和数据)

1.风电功率预测,LSTM风电功率预测(单变量)(Pytorch完整源码和数据) 2.数据集:风电功率数据集,已经处理好; 3.环境准备:python 3.8 , pytorch 1.8 版本及其以上,代码格式ipynb文件,可读性强; 4.模型描述:LSTM模型提升了风电功率预测精度。 5.领域描述:风电功率预测是指通过建立数学模型,以风电场的历史数据为输入,预测风电场未来一段时间内的有功功率输出。其目的是减少风能的不确定性,提高电网的稳定性和经济性,同时优化电力调度和市场交易。 6.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。

2025-07-13

风电功率预测,EMD-CNN-LSTM风电功率预测(Pytorch完整源码和数据)

1.风电功率预测,EMD-CNN-LSTM风电功率预测,单变量(Pytorch完整源码和数据) 2.数据集:风电功率数据集,已经处理好; 3.环境准备:python 3.8 , pytorch 1.8 版本及其以上,代码格式ipynb文件,可读性强; 4.模型描述:EMD-CNN-LSTM模型提升了风电功率预测精度。 5.领域描述:风电功率预测是指通过建立数学模型,以风电场的历史数据为输入,预测风电场未来一段时间内的有功功率输出。其目的是减少风能的不确定性,提高电网的稳定性和经济性,同时优化电力调度和市场交易。 6.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。

2025-07-13

SVM、SSA-SVM、ISSA-SVM、KPCA-ISSA-SVM四个模型的分类预测对比Matlab完整代码和数据

Matlab实现KPCA-ISSA-SVM基于核主成分分析和改进麻雀优化算法优化支持向量机分类预测(可用于故障诊断等方面)MATLAB代码,运行环境matlab2018及以上。 ❶含SVM、SSA-SVM、ISSA-SVM、KPCA-ISSA-SVM,四个模型的对比。经过降维后利用改进蜣螂算法优化LSSVM参数为:sig,gamma。 ❷改进策略:融合柯西变异和反向学习的改进麻雀算法可提高收敛率,促进算法寻优。 ❸可出分类效果图,迭代优化图,混淆矩阵 ❹代码中文注释清晰,质量极高 ❺赠送数据集,可以直接运行源程序。

2025-07-10

风电功率预测,EMD-CNN-GRU风电功率预测(Pytorch完整源码和数据)

1.风电功率预测,EMD-CNN-GRU风电功率预测,并行模型(单变量)(Pytorch完整源码和数据) 2.数据集:风电功率数据集,已经处理好; 3.环境准备:python 3.8 , pytorch 1.8 版本及其以上,代码格式ipynb文件,可读性强; 4.模型描述:EMD-CNN-GRU模型提升了风电功率预测精度。 5.领域描述:风电功率预测是指通过建立数学模型,以风电场的历史数据为输入,预测风电场未来一段时间内的有功功率输出。其目的是减少风能的不确定性,提高电网的稳定性和经济性,同时优化电力调度和市场交易。 6.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。

2025-07-06

风电功率预测,CEEMDAN-LSTM-Attention多特征风电功率预测(Pytorch完整源码和数据)

1.风电功率预测,CEEMDAN-LSTM-Attention多特征风电功率预测(Pytorch完整源码和数据) 2.数据集:风电功率数据集,已经处理好; 3.环境准备:python 3.8 , pytorch 1.8 版本及其以上,代码格式ipynb文件,可读性强; 4.模型描述:CEEMDAN-LSTM-Attention模型提升了风电功率预测精度。 5.领域描述:风电功率预测是指通过建立数学模型,以风电场的历史数据为输入,预测风电场未来一段时间内的有功功率输出。其目的是减少风能的不确定性,提高电网的稳定性和经济性,同时优化电力调度和市场交易。 6.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。

2025-07-06

风电功率预测,Transformer-BiLSTM多特征风电功率预测(Pytorch完整源码和数据)

1.风电功率预测,Transformer-BiLSTM多特征风电功率预测(Pytorch完整源码和数据) 2.数据集:风电功率数据集,已经处理好; 3.环境准备:python 3.8 , pytorch 1.8 版本及其以上,代码格式ipynb文件,可读性强; 4.模型描述:Transformer-BiLSTM模型提升了风电功率预测精度。 5.领域描述:风电功率预测是指通过建立数学模型,以风电场的历史数据为输入,预测风电场未来一段时间内的有功功率输出。其目的是减少风能的不确定性,提高电网的稳定性和经济性,同时优化电力调度和市场交易。 6.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。

2025-07-06

NRBO-FMD基于牛顿拉夫逊算法优化特征模态分解(Matlab完整源码和数据)

NRBO-FMD基于牛顿拉夫逊算法优化特征模态分解(Matlab完整源码和数据) 该MATLAB代码实现了NRBO-FMD基于牛顿拉夫逊算法优化特征模态分解,(NRBO-FMD),核心功能包括: 信号分解:使用FMD(Frequency Modulated Decomposition)算法对一维信号进行自适应分解。 参数优化:通过NRBO(一种优化算法)自动寻找FMD分解的最优滤波器参数和模态数量。 多选择优化:支持6种不同的目标函数(包络熵、信息熵等)指导优化过程。 结果可视化:绘制原始信号、优化迭代曲线、参数变化图及分解后的模态分量。

2025-07-12

GWO-FMD基于灰狼算法优化特征模态分解(Matlab完整源码和数据)

该MATLAB代码实现了基于GWO-FMD基于灰狼算法优化特征模态分解方法(GWO-FMD),核心功能包括: 信号分解:使用FMD(Frequency Modulated Decomposition)算法对一维信号进行自适应分解。 参数优化:通过GWO(一种优化算法)自动寻找FMD分解的最优滤波器参数和模态数量。 多选择优化:支持6种不同的目标函数(包络熵、信息熵等)指导优化过程。 结果可视化:绘制原始信号、优化迭代曲线、参数变化图及分解后的模态分量。

2025-07-12

风电功率预测,CNN-GRU风电功率预测(Pytorch完整源码和数据)

1.风电功率预测,CNN-GRU风电功率预测(Pytorch完整源码和数据) 2.数据集:风电功率数据集,已经处理好; 3.环境准备:python 3.8 , pytorch 1.8 版本及其以上,代码格式ipynb文件,可读性强; 4.模型描述:CNN-GRU模型提升了风电功率预测精度。 5.领域描述:风电功率预测是指通过建立数学模型,以风电场的历史数据为输入,预测风电场未来一段时间内的有功功率输出。其目的是减少风能的不确定性,提高电网的稳定性和经济性,同时优化电力调度和市场交易。 6.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。

2025-06-22

风电功率预测,TCN-GRU多特征风电功率预测(Pytorch完整源码和数据)

1.风电功率预测,TCN-GRU多特征风电功率预测(Pytorch完整源码和数据) 2.数据集:风电功率数据集,已经处理好; 3.环境准备:python 3.8 , pytorch 1.8 版本及其以上,代码格式ipynb文件,可读性强; 4.模型描述:TCN-GRU模型提升了风电功率预测精度。 5.领域描述:风电功率预测是指通过建立数学模型,以风电场的历史数据为输入,预测风电场未来一段时间内的有功功率输出。其目的是减少风能的不确定性,提高电网的稳定性和经济性,同时优化电力调度和市场交易。 6.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。

2025-06-22

瓦斯预测 第1讲 LSTM神经网络结合SHAP可解释分析的瓦斯涌出量预测

瓦斯预测 第1讲 LSTM神经网络结合SHAP可解释分析的瓦斯涌出量预测 PPT

2025-06-22

AOA-VMD-GRU和GRU故障诊断分类预测Matlab完整源码和数据

(1) main1_AOA_VMD.m 核心功能: 使用阿基米德算法优化算法(AOA) 优化变分模态分解(VMD) 的关键参数(惩罚因子α和模态数K),对多通道信号进行自适应分解。 关键步骤: 用AOA优化VMD参数(最小化包络熵) 用最优参数执行VMD分解 绘制分解结果(IMF分量) 读取4个Excel文件(0.xlsx~3.xlsx)的振动信号数据 数据预处理(替换0值为4) 对每个信号通道: 保存原始信号和VMD分解结果 (2) main2_AOA_VMD_GRU.m 核心功能: 对比普通GRU 和 AOA-VMD-GRU 在故障诊断中的性能: 方案1:原始信号 → GRU分类 方案2:VMD分解信号 → GRU分类 关键步骤: 普通GRU(20个隐藏单元) AOA-VMD-GRU(100个隐藏单元) 加载main1生成的信号数据 划分训练集/测试集(70%/30%) 构建两个GRU模型: 评估指标:准确率/精确率/召回率/F1分数 绘制混淆矩阵和性能对比曲线 依赖关系: main2 必须 在main1之后运行,依赖其输出的x_data.mat(原始信号)和vmd_data.mat(VMD分解结果) 技术流程: 信号分解 → 特征提取 → 故障诊断模型构建 → 性能对比 算法步骤 (1) AOA-VMD 优化流程(main1) for 每个信号通道 j in [1, d]: 设置AOA参数:种群数=10, 最大迭代=10 定义优化目标:最小化包络熵 fun(α,K) AOA搜索最优[α, K] 用最优(α,K)执行VMD分解 绘制IMF分量 保存原始信号 + 所有VMD结果 (2) 故障诊断流程(main2) 普通GRU分支: 加载原始信号x 数据归一化 构建GRU网络(20个隐藏单元) 训练+测试 → 计算指标

2025-06-15

AOA-VMD-BiLSTM和BiLSTM故障诊断分类预测Matlab完整源码和数据

(1) main1_AOA_VMD.m 核心功能: 使用阿基米德算法算术优化算法(AOA) 优化变分模态分解(VMD) 的关键参数(惩罚因子α和模态数K),对多通道信号进行自适应分解。 关键步骤: 用AOA优化VMD参数(最小化包络熵) 用最优参数执行VMD分解 绘制分解结果(IMF分量) 读取4个Excel文件(0.xlsx~3.xlsx)的振动信号数据 数据预处理(替换0值为4) 对每个信号通道: 保存原始信号和VMD分解结果 (2) main2_AOA_VMD_BiLSTM.m 核心功能: 对比普通BiLSTM 和 AOA-VMD-BiLSTM 在故障诊断中的性能: 方案1:原始信号 → BiLSTM分类 方案2:VMD分解信号 → BiLSTM分类 关键步骤: 普通BiLSTM(20个隐藏单元) AOA-VMD-BiLSTM(100个隐藏单元) 加载main1生成的信号数据 划分训练集/测试集(70%/30%) 构建两个BiLSTM模型: 评估指标:准确率/精确率/召回率/F1分数 绘制混淆矩阵和性能对比曲线

2025-06-15

AOA-VMD-LSTM和LSTM故障诊断分类预测Matlab完整源码和数据

代码主要功能 (1) main1_AOA_VMD.m 核心功能: 使用阿基米德算法优化算法(AOA) 优化变分模态分解(VMD) 的关键参数(惩罚因子α和模态数K),对多通道信号进行自适应分解。 关键步骤: 用AOA优化VMD参数(最小化包络熵) 用最优参数执行VMD分解 绘制分解结果(IMF分量) 读取4个Excel文件(0.xlsx~3.xlsx)的振动信号数据 数据预处理(替换0值为4) 对每个信号通道: 保存原始信号和VMD分解结果 (2) main2_AOA_VMD_LSTM.m 核心功能: 对比普通LSTM 和 AOA-VMD-LSTM 在故障诊断中的性能: 方案1:原始信号 → LSTM分类 方案2:VMD分解信号 → LSTM分类 关键步骤: 普通LSTM(20个隐藏单元) AOA-VMD-LSTM(100个隐藏单元) 加载main1生成的信号数据 划分训练集/测试集(70%/30%) 构建两个LSTM模型: 评估指标:准确率/精确率/召回率/F1分数 绘制混淆矩阵和性能对比曲线 依赖关系: main2 必须 在main1之后运行,依赖其输出的x_data.mat(原始信号)和vmd_data.mat(VMD分解结果) 技术流程: 信号分解 → 特征提取 → 故障诊断模型构建 → 性能对比

2025-06-15

光伏功率预测,GA-BP遗传算法优化BP神经网络多变量单步光伏功率预测(Matlab完整源码和数据)

1.光伏功率预测,GA-BP遗传算法优化BP神经网络多变量单步光伏功率预测(Matlab完整源码和数据) 2.数据集:北半球功率数据集; 3.环境准备:Matlab2020b版本及其以上,可读性强; 4.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。

2025-06-09

光伏功率预测,PSO-BP粒子群优化BP神经网络多变量单步光伏功率预测(Matlab完整源码和数据)

1.光伏功率预测,PSO-BP粒子群优化BP神经网络多变量单步光伏功率预测(Matlab完整源码和数据) 2.数据集:北半球功率数据集; 3.环境准备:Matlab2020b版本及其以上,可读性强; 4.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。

2025-06-09

CPO-SVR冠豪猪优化算法优化支持向量机回归多输入多输出预测(Matlab完整源码和数据)

Matlab实现CPO-SVR冠豪猪优化算法优化支持向量机回归多输入多输出预测(Matlab完整源码和数据) 1.data为数据集,4个输入特征,2个输出变量。 2.main.m为主程序文件。 3.命令窗口输出MAPE、MAE、RMSE和R2,可在下载区获取数据和程序内容。 4.附赠案例数据可直接运行,一键出图~ 注意程序和数据放在一个文件夹,运行环境为Matlab2023及以上。 5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 6.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。 7.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信

2025-06-08

光伏功率预测,RF随机森林多变量单步光伏功率预测(Matlab完整源码和数据)

1.光伏功率预测,RF随机森林多变量单步光伏功率预测(Matlab完整源码和数据) 2.数据集:北半球功率数据集; 3.环境准备:Matlab2020b版本及其以上,可读性强; 4.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。

2025-06-08

光伏功率预测,BP神经网络多变量单步光伏功率预测(Matlab完整源码和数据)

1.光伏功率预测,BP神经网络多变量单步光伏功率预测(Matlab完整源码和数据) 2.数据集:北半球功率数据集; 3.环境准备:Matlab2020b版本及其以上,可读性强; 4.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。

2025-06-08

风电功率预测,VMD-CNN-Transformer风电功率预测(Pytorch完整源码和数据)

1.风电功率预测,VMD-CNN-Transformer(单变量)风电功率预测(Pytorch完整源码和数据) 2.数据集:风电功率数据集,已经处理好; 3.环境准备:python 3.8 , pytorch 1.8 版本及其以上,代码格式ipynb文件,可读性强; 4.模型描述:EMD-Transformer模型提升了风电功率预测精度。 5.领域描述:风电功率预测是指通过建立数学模型,以风电场的历史数据为输入,预测风电场未来一段时间内的有功功率输出。其目的是减少风能的不确定性,提高电网的稳定性和经济性,同时优化电力调度和市场交易。 6.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。

2025-08-11

Matlab实现POA-LSSVM鹈鹕算法优化最小二乘支持向量机多特征分类预测(完整源码和数据)

1.Matlab实现POA-LSSVM鹈鹕算法优化最小二乘支持向量机多特征分类预测(完整源码和数据),运行环境Matlab2018b及以上; 2.输入12个特征,输出分4类,可视化展示分类准确率,可在下载区获取数据和程序内容。 3.算法优化LSSVM参数为:sig,gamma。 4.excel数据集,main为主程序,其他为函数文件,无需运行,分类效果如下: 注:程序和数据放在一个文件夹。

2025-08-09

Matlab实现INFO-LSSVM向量加权平均算法优化最小二乘支持向量机多特征分类预测(完整源码和数据)

1.Matlab实现INFO-LSSVM向量加权平均算法优化最小二乘支持向量机多特征分类预测(完整源码和数据),运行环境Matlab2018b及以上; 2.输入12个特征,输出分4类,可视化展示分类准确率,可在下载区获取数据和程序内容。 3.算法优化LSSVM参数为:sig,gamma。 4.excel数据集,main为主程序,其他为函数文件,无需运行,分类效果如下: 注:程序和数据放在一个文件夹。

2025-08-09

Matlab实现GJO-LSSVM金豹优化算法优化最小二乘支持向量机多特征分类预测(完整源码和数据)

1.Matlab实现GJO-LSSVM金豹优化算法优化最小二乘支持向量机多特征分类预测(完整源码和数据) ,运行环境Matlab2018b及以上; 2.输入12个特征,输出分4类,可视化展示分类准确率,可在下载区获取数据和程序内容。 3.算法优化LSSVM参数为:sig,gamma。 4.excel数据集,main为主程序,其他为函数文件,无需运行,分类效果如下: 注:程序和数据放在一个文件夹。

2025-08-09

Matlab实现SABO-LSSVM减法平均优化算法优化最小二乘支持向量机多特征分类预测(完整源码和数据)

1.Matlab实现SABO-LSSVM减法平均优化算法优化最小二乘支持向量机多特征分类预测,运行环境Matlab2018b及以上; 2.输入12个特征,输出分4类,可视化展示分类准确率,可在下载区获取数据和程序内容。 3.算法优化LSSVM参数为:sig,gamma。 4.excel数据集,main为主程序,其他为函数文件,无需运行,分类效果如下: 注:程序和数据放在一个文件夹。

2025-08-09

风电功率预测,VMD-CNN-BiLSTM风电功率预测(Pytorch完整源码和数据)

1.风电功率预测,VMD-CNN-BiLSTM风电功率预测(单变量)(Pytorch完整源码和数据) 2.数据集:风电功率数据集,已经处理好; 3.环境准备:python 3.8 , pytorch 1.8 版本及其以上,代码格式ipynb文件,可读性强; 4.模型描述:VMD-CNN-BiLSTM模型提升了风电功率预测精度。 5.领域描述:风电功率预测是指通过建立数学模型,以风电场的历史数据为输入,预测风电场未来一段时间内的有功功率输出。其目的是减少风能的不确定性,提高电网的稳定性和经济性,同时优化电力调度和市场交易。 6.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。

2025-08-02

风电功率预测,EMD-Transformer风电功率预测(Pytorch完整源码和数据)

1.风电功率预测,EMD-Transformer风电功率预测(单变量)(Pytorch完整源码和数据) 2.数据集:风电功率数据集,已经处理好; 3.环境准备:python 3.8 , pytorch 1.8 版本及其以上,代码格式ipynb文件,可读性强; 4.模型描述:EMD-Transformer模型提升了风电功率预测精度。 5.领域描述:风电功率预测是指通过建立数学模型,以风电场的历史数据为输入,预测风电场未来一段时间内的有功功率输出。其目的是减少风能的不确定性,提高电网的稳定性和经济性,同时优化电力调度和市场交易。 6.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。

2025-07-27

风电功率预测,EMD-LSTM-Attention风电功率预测(Pytorch完整源码和数据)

1.风电功率预测,EMD-LSTM-Attention风电功率预测(单变量)(Pytorch完整源码和数据) 2.数据集:风电功率数据集,已经处理好; 3.环境准备:python 3.8 , pytorch 1.8 版本及其以上,代码格式ipynb文件,可读性强; 4.模型描述:EMD-LSTM-Attention模型提升了风电功率预测精度。 5.领域描述:风电功率预测是指通过建立数学模型,以风电场的历史数据为输入,预测风电场未来一段时间内的有功功率输出。其目的是减少风能的不确定性,提高电网的稳定性和经济性,同时优化电力调度和市场交易。 6.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。

2025-07-27

BP神经网络多输入单输出回归预测+SHAP可解释分析(MATLAB完整源码和数据)

该MATLAB代码实现了一个完整的BP神经网络回归预测模型,包含数据预处理、模型训练、预测评估及特征解释(SHAP值分析)。核心功能包括: 数据预处理:数据集随机打乱、训练集/测试集划分(70%/30%)、数据归一化 BP神经网络建模:单隐含层(5节点)网络训练与预测 模型评估:计算1评价指标(RMSE、R²、MAE、MAPE等) 可视化分析:回归图、误差直方图、预测对比图、拟合效果图等 特征解释:基于SHAP值分析特征重要性及影响方向。 运行环境matlab2020及以上

2025-08-04

一种基于入侵杂草优化算法(IWO)的聚类分析对比K-Means、高斯混合模型(GMM)(Matlab完整代码)

一种基于入侵杂草优化算法(IWO)的聚类分析对比K-Means、高斯混合模型(GMM)(Matlab完整代码) 该代码实现了一种基于入侵杂草优化算法(IWO)的聚类分析,并与K-Means、高斯混合模型(GMM)进行对比实验。核心功能包括: IWO聚类优化:使用IWO算法寻找最优聚类中心 多算法对比:与K-Means、GMM进行聚类效果比较 可视化分析:绘制聚类结果和收敛曲线 量化评估:计算算法间的标签差异(MAE/MSE)

2025-08-02

BiTCN双向时间卷积神经网络多输入单输出回归预测(MATLAB完整源码和数据)

BiTCN双向时间卷积神经网络多输入单输出回归预测(MATLAB完整源码和数据) 1.Matlab实现BiTCN双向时间卷积神经网络多变量回归预测,多输入单输出; 2.运行环境为Matlab2023b; 3.data为数据集,输入多个特征,输出单个变量,多变量回归预测,main.m为主程序,运行即可,所有文件放在一个文件夹; 4.命令窗口输出R2、MSE、MAE、MAPE和MBE多指标评价。

2025-07-27

SAO-DBSCAN雪消融优化算法优化DBSCAN聚类MATLAB完整代码和数据

SAO-DBSCAN雪消融优化算法优化DBSCAN聚类MATLAB完整代码和数据 该代码实现了 基于雪消融优化算法(SAO)自动优化DBSCAN聚类参数 的完整流程,核心功能包括: 数据预处理:读取Excel数据集并归一化 参数自动优化:使用SAO算法寻找DBSCAN的最佳参数(邻域半径Eps和最小点数MinPts) 聚类分析:用优化后的参数执行DBSCAN聚类 结果可视化:展示原始数据、优化过程曲线和聚类结果 算法步骤 数据准备阶段 • 导入Excel数据集(数据集.xlsx) • 数据归一化处理(Min-Max归一化到[0,1]区间) • 绘制原始数据散点图 参数优化阶段 • 设置SAO算法参数(种群规模、迭代次数等) • 定义适应度函数(轮廓系数Silhouette Index) • 执行SAO算法优化DBSCAN参数: [Best_score, Best_pos] = SAO(N,T,lb,ub,dim,fobj); 聚类执行阶段 • 使用优化后的参数运行DBSCAN

2025-07-18

Pytorch实现Transformer-KAN电力负荷时间序列预测模型(完整源码和数据)

1.Pytorch实现Transformer-KAN电力负荷时间序列预测模型(完整源码和数据) 2.数据集:ETTh2数据集,已经处理好; 3.环境准备:python 3.8 , pytorch 1.8 版本及其以上,代码格式ipynb文件,可读性强; 4.模型描述:Transformer-KAN模型提升了电力负荷预测精度。 5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。

2025-07-13

Pytorch实现TCN-KAN电力负荷时间序列预测模型(完整源码和数据)

1.Pytorch实现TCN-KAN电力负荷时间序列预测模型(完整源码和数据) 2.数据集:ETTh2数据集,已经处理好; 3.环境准备:python 3.8 , pytorch 1.8 版本及其以上,代码格式ipynb文件,可读性强; 4.模型描述:TCN-KAN模型提升了电力负荷预测精度。 5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。

2025-07-13

Pytorch实现LSTM-KAN电力负荷时间序列预测模型(完整源码和数据)

1.Pytorch实现LSTM-KAN电力负荷时间序列预测模型(完整源码和数据) 2.数据集:ETTh2数据集,已经处理好; 3.环境准备:python 3.8 , pytorch 1.8 版本及其以上,代码格式ipynb文件,可读性强; 4.模型描述:LSTM-KAN模型提升了电力负荷预测精度。 5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。

2025-07-13

Pytorch实现KAN电力负荷时间序列预测模型(完整源码和数据)

1.Pytorch实现KAN电力负荷时间序列预测模型(完整源码和数据) 2.数据集:ETTh2数据集,已经处理好; 3.环境准备:python 3.8 , pytorch 1.8 版本及其以上,代码格式ipynb文件,可读性强; 4.模型描述:KAN模型提升了电力负荷预测精度。 5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。

2025-07-13

Pytorch实现KANConv电力负荷时间序列预测模型(完整源码和数据)

1.Pytorch实现KANConv电力负荷时间序列预测模型(完整源码和数据) 2.数据集:ETTh2数据集,已经处理好; 3.环境准备:python 3.8 , pytorch 1.8 版本及其以上,代码格式ipynb文件,可读性强; 4.模型描述:KANConv模型提升了电力负荷预测精度。 5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。

2025-07-13

Pytorch实现GRU-KAN电力负荷时间序列预测模型(完整源码和数据)

1.Pytorch实现GRU-KAN电力负荷时间序列预测模型(完整源码和数据) 2.数据集:ETTh2数据集,已经处理好; 3.环境准备:python 3.8 , pytorch 1.8 版本及其以上,代码格式ipynb文件,可读性强; 4.模型描述:GRU-KAN模型提升了电力负荷预测精度。 5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。

2025-07-13

Pytorch实现CNN-LSTM-KAN电力负荷时间序列预测模型(完整源码和数据)

1.Pytorch实现CNN-LSTM-KAN电力负荷时间序列预测模型(完整源码和数据) 2.数据集:ETTh2数据集,已经处理好; 3.环境准备:python 3.8 , pytorch 1.8 版本及其以上,代码格式ipynb文件,可读性强; 4.模型描述:CNN-LSTM-KAN模型提升了电力负荷预测精度。 5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。

2025-07-13

Pytorch实现CNN-KAN电力负荷时间序列预测模型(完整源码和数据)

1.Pytorch实现CNN-KAN电力负荷时间序列预测模型(完整源码和数据) 2.数据集:ETTh2数据集,已经处理好; 3.环境准备:python 3.8 , pytorch 1.8 版本及其以上,代码格式ipynb文件,可读性强; 4.模型描述:CNN-KAN模型提升了电力负荷预测精度。 5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。

2025-07-13

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除