P1605 迷宫

这是一个使用深度优先搜索(DFS)解决的迷宫问题,给定一个带有障碍的N×M网格,从起点到终点的无障碍路径数量。输入包括迷宫尺寸、障碍数量、起点和终点坐标,以及障碍坐标。代码中,用二维数组表示迷宫并标记障碍,然后使用DFS进行遍历,统计到达终点的路径数。
摘要由CSDN通过智能技术生成

题目描述

给定一个 N×M 方格的迷宫,迷宫里有 T处障碍,障碍处不可通过。

在迷宫中移动有上下左右四种方式,每次只能移动一个方格。数据保证起点上没有障碍。

给定起点坐标和终点坐标,每个方格最多经过一次,问有多少种从起点坐标到终点坐标的方案。

输入格式

第一行为三个正整数 N,M,T分别表示迷宫的长宽和障碍总数。

第二行为四个正整数 SX,SY,FX,FY,SX,SY代表起点坐标,FX,FY 代表终点坐标。

接下来 T 行,每行两个正整数,表示障碍点的坐标。

输出格式

输出从起点坐标到终点坐标的方案总数。

输入输出样例

样例输入

2 2 1
1 1 2 2
1 2

样例输出

1

说明/提示

对于 100% 的数据,1≤N,M≤5,1≤T≤10,1≤SX,FX≤n,1≤SY,FY≤m。

思路:

没有。

代码如下

#include <bits/stdc++.h>
using namespace std;
int const N = 20;
int dx[] = {0, 0, 1, -1}; 
int dy[] = {1, -1, 0, 0};
int a[N][N];
int b[N][N];
int vis[N][N];
int n, m, t, barrierx, barriery, startx, starty, endx, endy, bx, by, ex, ey, ans;
void dfs(int x, int y)
{
  for (int i = 0; i < 4; ++i)
  {
    int xx = x + dx[i];
    int yy = y + dy[i];
    if (xx > 0 && xx <= n && yy > 0 && yy <= m && a[xx][yy] != 6 && !vis[xx][yy])
    {
      vis[xx][yy] = 1;
      dfs(xx, yy);
      //回溯
      vis[xx][yy] = 0; 
    }
    if ( x == endx && y == endy ) //判断x和y的坐标是否和终点一致
    {
      ans++;
      return;
    }
  }
}
int main()
{
  cin >> n >> m >> t;
  for (int i = 0; i < 1; ++i)
  {
    cin >> startx >> starty >> endx >> endy;
  }
  for (int i = 0; i < t; ++i)
  {
    cin >> barrierx >> barriery;
    a[barrierx][barriery] = 6; //将障碍块赋值
  }
  for (int i = 0; i < n; ++i)
  {
    for (int j = 0; j < m; ++j)
    {
      bx = startx;
      by = starty;
      ex = endx;
      ey = endy;
    }
  }
  vis[bx][by] = 1;
  dfs(bx, by);
  cout << ans << endl;
  memset(vis, 0, sizeof(vis)); //初始化
  return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值