题目描述
给定一个 N×M 方格的迷宫,迷宫里有 T处障碍,障碍处不可通过。
在迷宫中移动有上下左右四种方式,每次只能移动一个方格。数据保证起点上没有障碍。
给定起点坐标和终点坐标,每个方格最多经过一次,问有多少种从起点坐标到终点坐标的方案。
输入格式
第一行为三个正整数 N,M,T分别表示迷宫的长宽和障碍总数。
第二行为四个正整数 SX,SY,FX,FY,SX,SY代表起点坐标,FX,FY 代表终点坐标。
接下来 T 行,每行两个正整数,表示障碍点的坐标。
输出格式
输出从起点坐标到终点坐标的方案总数。
输入输出样例
样例输入
2 2 1
1 1 2 2
1 2
样例输出
1
说明/提示
对于 100% 的数据,1≤N,M≤5,1≤T≤10,1≤SX,FX≤n,1≤SY,FY≤m。
思路:
没有。
代码如下
#include <bits/stdc++.h>
using namespace std;
int const N = 20;
int dx[] = {0, 0, 1, -1};
int dy[] = {1, -1, 0, 0};
int a[N][N];
int b[N][N];
int vis[N][N];
int n, m, t, barrierx, barriery, startx, starty, endx, endy, bx, by, ex, ey, ans;
void dfs(int x, int y)
{
for (int i = 0; i < 4; ++i)
{
int xx = x + dx[i];
int yy = y + dy[i];
if (xx > 0 && xx <= n && yy > 0 && yy <= m && a[xx][yy] != 6 && !vis[xx][yy])
{
vis[xx][yy] = 1;
dfs(xx, yy);
//回溯
vis[xx][yy] = 0;
}
if ( x == endx && y == endy ) //判断x和y的坐标是否和终点一致
{
ans++;
return;
}
}
}
int main()
{
cin >> n >> m >> t;
for (int i = 0; i < 1; ++i)
{
cin >> startx >> starty >> endx >> endy;
}
for (int i = 0; i < t; ++i)
{
cin >> barrierx >> barriery;
a[barrierx][barriery] = 6; //将障碍块赋值
}
for (int i = 0; i < n; ++i)
{
for (int j = 0; j < m; ++j)
{
bx = startx;
by = starty;
ex = endx;
ey = endy;
}
}
vis[bx][by] = 1;
dfs(bx, by);
cout << ans << endl;
memset(vis, 0, sizeof(vis)); //初始化
return 0;
}