- 博客(4)
- 收藏
- 关注
原创 天猫双十一美妆销售数据分析
数据背景数据为天猫双十一女性美妆的数据集,围绕产品及其销量和评论撰写。数据具有7个特征,可以从多个维度解析文本。由于是真实的商业数据,所以做了匿名处理,数据集中对店名的引用被处理为产品的品牌名以保护店家隐私。字段说明数据包括27599行和7个特征变量。每一行对应一个产品的销售情况,包括以下变量:update_time 统计时间id 产品编号title 产品名称price 交易价格sale_count 销量comment_count 评论数量。
2025-05-18 12:09:47
814
原创 基于机器学习的信贷违约预测
本文旨在利用机器学习中的LightGBM模型构建信用风险评估模型,预测贷款申请人的违约概率,并区分中高低风险客户,从而优化贷款审批决策。研究基于Prosper公开贷款数据集,包含81个特征,涵盖贷款基本信息、借款人信息、信用历史与评分等类别。通过数据预处理、探索性分析和模型构建,研究发现借款人信用评分、信用卡使用频率、收入水平、信用评级及客户身份等因素与违约率显著相关。模型评估结果显示,该模型在准确率、PRAUC和RMSCE等指标上表现良好,能够有效降低银行因误批或拒批贷款而导致的损失,提升贷款决策的精准性
2025-05-15 22:06:49
985
原创 基于机器学习的餐饮企业经营数据挖掘与预测(含原数据和代码)
Cluster 0: 新客户或低活跃度客户,需要通过促销活动等手段提高其消费频率和金额。Cluster 1: 高频消费者或忠诚客户,是企业的核心客户群体,需要提供优质服务和个性化营销策略来保持其忠诚度。Cluster 2: 高价值但低活跃度客户,需要通过定向营销等手段重新激活其消费行为。
2025-05-14 11:07:15
1297
原创 小红书用户消费情况分析(含原数据和代码)
在社交电商与内容种草深度融合的背景下,小红书作为年轻人获取消费灵感的重要平台,其用户行为数据对于商家优化产品策略和个人用户理性消费具有重要价值。本文通过Python数据分析工具(如Pandas、Matplotlib/Seaborn和Scikit-learn)对小红书用户消费数据进行了深入分析。
2025-05-09 17:59:28
1135
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人