1.整数的存储
1.1整数的表示方法
整数的2进制表⽰⽅法有三种,即原码、反码和补码
三种表示⽅法均有符号位和数值位两部分,符号位都是⽤0表⽰“正”,⽤1表⽰“负”,⽽数值位最
⾼位的⼀位是被当做符号位,剩余的都是数值位。
1.2整数在内存中的储存形式
整数在内存中是用补码进行储存的
2.浮点数的存储
2.1常见浮点数
float,double,long double类型
2.2浮点数的储存
二进制v浮点数的形式:V = (-1)^S *M*2^E
举例来说:
⼗进制的5.0,写成⼆进制是 101.0 ,相当于 1.01×2^2 。
那么,按照上⾯V的格式,可以得出S=0,M=1.01,E=2。
⼗进制的-5.0,写成⼆进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。
IEEE?754规定:
对于32位的浮点数,最⾼的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M
对于64位的浮点数,最⾼的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M
2.3浮点数存的过程
1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表⽰⼩数部分。?
IEEE?754规定,在计算机内部保存M时,默认这个数的第⼀位总是1,因此可以被舍去,只保存后⾯的
xxxxxx部分。⽐如保存1.01的时候,只保存01,等到读取的时候,再把第⼀位的1加上去。这样做的⽬
的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第⼀位的1舍去以后,等于可以保
存24位有效数字。
⾄于指数E,情况就⽐较复杂。
⾸先,E为⼀个⽆符号整数(unsigned?int)
这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我
们知道,科学计数法中的E是可以出现负数的,所以IEEE?754规定,存⼊内存时E的真实值必须再加上
⼀个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。⽐如,2^10的E是
10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001
3.两者之间的转换
整数是由二进制存储到内存中的,但浮点数是存储的S,E,M的数值,用来表示浮点数的值。
当得到整数转浮点数时:
应当先由十进制转为二进制,按照浮点数的形式对整数进行拆分,得到浮点数。
当有了浮点数转整数时:
由十进制转化为二进制,按浮点数二进制存储且打印