数系最终章——复数(1)

      大家好,在下默默无闻再次露面.今天,我们将沿着数的脚步,去探索实数外的数——虚数,以及包含它俩的数集——复数集.由于复数内容较多,对于我这个菜鸟来说实在是有些长,所以将会分2到3篇来和大家分享.

      这一篇,将带领我们冲破实数的限制,叩开复数的大门......

一、虚数

(1)另一片天地——引入

有理数无法对开方运算封闭时,便引入了无理数,两者一起构成了实数.

实数很完美,很普遍.生活中处处都是实数.但在解高次多项式方程时,有个问题摆在面前:偶次根下出现了负数.

稍微接触到一元三次方程,就有这样一个问题:

x^3=15x+4

会得到

 x=\sqrt[3]{2+11\sqrt{-1}}+\sqrt[3]{2-11\sqrt{-1}}=4

应成立.

哪里有平方等于-1的实数啊,虚…

这种数简直太”荒谬”了,许多数学家都尽量避开它们.但无论怎么对其不见,这些数都强势地表现出:我们是血脉纯正的数,应与那些所谓的实数平起平坐.

先不管这些数是否”血脉纯正”,它都很”虚”——这是不争的事实.实数对开方运算仍不封闭,人们只好接受这堆不”实”的数——虚数.

虚数单位的定义就足以让我们知道它有多”虚”:

i^2=-1.

够"虚幻"吧?

(2)"一些"性质(真的是一些)

i的性质:

\frac{1}{i}=-i,\frac{1+i}{1-i}=i,\frac{1-i}{1+i}=-i,i^{-n}=\frac{1}{i^n}

i^n(n\in \mathbb{Z})的性质:

i^{4n}=1,i^{4n+1}=i,i^{4n+2}=-1,i^{4n+3}=-i

\omega ^n(n\in \mathbb{N}_{+},\omega ^3=1)的性质:

\omega _{1}=\frac{\sqrt{3}i-1}{2},\omega _{2}=\frac{-\sqrt{3}i-1}{2},

1+\omega _{1}+\omega _{2}=0,\omega _{1}^{2}=\omega _{2},\omega _{2}^{2}=\omega _{1},\omega _{1}\omega _{2}=1,\omega ^{3n}=1

(3)浅浅地应用——重新解一元二次方程

从一开始学习二次根式,我们就被反复强调:被开方数不能小于零.类似的,一元二次方程判别式的值小于零时,中学课本中管其叫”无解”.

真的无解吗?这是什么方程,都能没有数能满足它?

嗯,这方程只是在装高冷,只是实数范围内无解罢了.自从有了虚数,它就在没法装下去了.若判别式的值小于零,求根公式就得稍微变一变(可以试着推导一下):

x=\frac{-b\pm \sqrt{-\Delta }i}{2a}\left (\Delta < 0 \right )

还是让实际方程来帮助理解:

例(1)解方程x^2+x+1=0

     分析:显然(卷子上不要这么写),\Delta < 0,所以方程在实数范围内无解.\Delta的值为1^2-4\times1 \times1=-3,代入上述公式即可求解.

         答案:x_1{}=\frac{\sqrt{3}i-1}{2},x_2{}=\frac{-\sqrt{3}i-1}{2}.

二、复数

  复数有很多东西可以扯,我们只挑几个知名度较高的来瞧瞧.

(1)原来都在同一个世界——一统数集

实数和虚数原来在一个世界!(一大波定义来袭)

这俩数集都是复数这个数集的真子集.形如z=a+bi的数叫做复数,其中a,b\in \mathbb{R}.复数集用\mathbb{C}表示,虚数集用\mathbb{I}表示,则\mathbb{R}\nsubseteq \mathbb{C},\mathbb{I}\nsubseteq \mathbb{C},且\mathbb{R}\cup \mathbb{I}=\mathbb{C}.

对于复数z=a+bi,当a=0时,为纯虚数,称b为其虚部,记作Im(z)=b;当b=0时,为实数,称a为其实部,记作Re(z)=a,特别的,称虚部不为0的复数为虚数.

给定两个复数z_{1},z_{2},若实部与虚部对应相等,则说这两个复数相等.不全是实数的两个复数,不规定它们的大小,只能说相等或不相等,也不能将虚数与0比较大小.

任意复数都有(绝对值),虚数不能比较大小,但它们的模可以.复数z=a+bi的模为\left | z \right |=\sqrt{a^2+b^2},由此可以得出为什么正数的绝对值(模)等于它本身.互为共轭复数的两个复数模相等.

对于实部相等,虚部互为相反数的两个复数,称这两个复数互为共轭复数,记作\bar{z}=a-bi.

搞了半天,数集终于对任何运算都成立了.

让我歇会儿......

(2)复数的运算

给定两个复数z_{1}=a+bi,z_{2}=c+di,则:

z_{1}+z_{2}=(a+b)+(c+d)i

z_{1}z_{2}=(ac-bd)+(ad+bc)i(无需死记)

\frac{z_{1}}{z_{2}}=\frac{ac+bd}{c^2+b^2}+\frac{bc-ad}{c^2+d^2}i(z_{2}\neq 0)(无需死记)

④复数满足交换律,结合律和分配律

⑤复数满足幂的运算的性质

(a+bi)(a-bi)=a^2+b^2

基本不需要记住,大多情况现算即可.

(3)模和共轭复数的性质(能记就记吧,我是记不住)

模的两个重要性质:

||z_{1}|-|z_{2}||\leqslant |z_{1}\pm z_{2}|\leqslant |z_{1}|+|z_{2}|,

|z_{1}+z_{2}|^2+|z_{1}-z_{2}|^2=2|z_{1}|^2+2|z_{2}|^2

共轭复数的性质:

z\bar{z}=|z|^2=|\bar{z}|^2

\bar{z_{1}\pm z_{2}}=\bar{z_{1}}\pm \bar{z_{2}},\bar{z_{1}z_{2}}=\bar{z_{1}}\bar{z_{2}},\bar{(\frac{z_{1}}{z_{2}})}=\frac{\bar{z_{1}}}{\bar{z_{2}}}(z_{2}\neq 0)

(4)复数的三角表示(前方高能缓冲区)

复数除了可以表示成代数形式(a+bi),还可以表示成三角形式,即r(\cos \theta +i\sin \theta ),r为复数的,\angle \theta称为该复数的辐角,记为arg(z).辐角的值有多个,\theta +2k\pi (k\in \mathbb{Z})都是它的辐角,在[0,2\pi )内辐角的值称作辐角主值.其中\cos \theta =\frac{a}{r},\sin \theta =\frac{b}{r},\tan \theta =\frac{b}{a}.

复数代数形式和三角形式的关系如下:

\left\{\begin{matrix}a=r\cos \theta & \\ b=r\sin \theta & \\ r=\sqrt{a^2+b^2} & \end{matrix}\right.

关于复数,今天先分享这么多.复数三角形式的运算法则是什么?复数还有没有其他表示形式?这些,下篇文章中都有答案.

毕竟是新手,如有错误,评论区中尽情吐槽!

                                                                                       未完,待续......

    

   

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值