河南萌新联赛2024第二场

题目链接:https://ac.nowcoder.com/acm/contest/87255
1.国际旅行Ⅰ
#include<bits/stdc++.h>
using namespace std;
typedef long long ll; 
ll n,m,q,k;
int a[100010];
int main()
{
	cin>>n>>m>>q;
	for(int i=0;i<n;i++)
	{
		cin>>a[i];
	}
	sort(a,a+n);
	for(int i=0;i<m;i++)
	{
		int u,v;
		cin>>u>>v;
	}
	for(int i=0;i<q;i++)
	{
		cin>>k;
		cout<<a[k-1]<<endl;
	}
	return 0;
}
2.小w和大W的决斗 

方法一:异或和与博弈论算法,参考我上一篇,有讲解。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int n,temp=0;
int a[10010];
int sign[10010];
set<int>nums;//状态唯一,否则x^x=0
int main()
{
	cin>>n;
	for(int x=1; x<=100; x++)
	{
		nums.clear();
		//操作1
		for(int y=1; y<=x; y++)
		{
			nums.insert(sign[x-y]);//sign[]可以变化的情况 
		}
		//操作2
		for(int i=1; i<x; i++)
		{
			for(int j=1; j<x-i; j++)
			{
				int k=x-i-j;
				if(k>0)
				{
					nums.insert(sign[i]^sign[j]^sign[k]);//sign[]可以变化的情况 
				}
			}
		}
		//找到最小的等价x 
		int sign1=0;  
		while(nums.count(sign1))//能达到的等价x(要求操作后可以使该数字能变化为小于x的任意数字) 
		{
			sign1++;
		}
		sign[x]=sign1;//所有可能的后继状态 
	}
	int result=0;
	for(int i=0; i<n; i++)
	{
		cin>>a[i];
		result^=sign[a[i]];
	}
	if(result!=0)
	{
		cout<<"w win"<<endl;
	}
	else
	{
		cout<<"W win"<<endl;
	}
	return 0;
}

 方法二:打表查找到规律。

//打表查找到规律:
//if x mod 8==0,sg(x)=x-1
//if x mod 8== 7, sg(x)=x+1
//else sg(x)= x
 
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int n;
int a[10010];

int main()
{
	memset(a, 0, sizeof(a));
	cin >> n;
	int result=0;
	for (int i = 0; i < n; i++)
	{
		cin >> a[i];
		if(a[i]%8==0)
		{
			a[i]=a[i]-1;//等价于a[i]=a[i]-1; 
		}
		if(a[i]%8==7)
		{
			a[i]=a[i]++;//不等价于a[i]=a[i]+1; 
		}
		result^=a[i];
	}
	if(result!=0)
	{
		cout<<"w win"<<endl;
	}
	else
	{
		cout<<"W win"<<endl;
	}

	return 0;
}
3.水灵灵的小学弟
#include<bits/stdc++.h>
using namespace std;
typedef long long ll; 
int t;
int a,b;
int main()
{
	cin>>t;
	while(t--)
	{
		cin>>a>>b;
		cout<<"DHY"<<endl;
	}
	return 0;
}
4.重生之zbk要拿回属于他的一切 
#include<bits/stdc++.h>
using namespace std;
typedef long long ll; 
string s,s1;
ll n; 
ll position=0,sum=0;
int main()
{
	s1="chuan";
	cin>>n;
	cin>>s;
    while((position=s.find(s1,position))!=string::npos)
    {
        sum++;
        position++;
    }
	cout<<sum<<endl;
	return 0;
}
 5.这是签到

方法一,基础行列式公式计算(对角线法):

#include <bits/stdc++.h>
using namespace std;
int main()
{
	int n, m;
	cin >> n >> m;
	vector<int> sum;
	int a[6][6];
	memset(a, 0, sizeof(a));
	for (int i = 1; i <= n; i++)
	{
		for (int j = 1; j <= m; j++)
		{
			cin >> a[i][j];
		}
	}
	int sign=max(n,m);
	if (sign>=1)
	{
		sum.push_back(a[1][1]);
	}
	if (sign >= 2)
	{
		sum.push_back(a[1][1] * a[2][2] - a[1][2] * a[2][1]);
	}
	if (sign >= 3)
	{
		sum.push_back(a[1][1] * (a[2][2] * a[3][3] - a[2][3] * a[3][2]) -
		              a[1][2] * (a[2][1] * a[3][3] - a[2][3] * a[3][1]) +
		              a[1][3] * (a[2][1] * a[3][2] - a[2][2] * a[3][1]));
	}
	if (sign >= 4)
	{
		sum.push_back((a[1][1] * a[2][2] * a[3][3] * a[4][4]) +
		              (a[1][2] * a[2][3] * a[3][4] * a[4][1]) +
		              (a[1][3] * a[2][4] * a[3][1] * a[4][2]) +
		              (a[1][4] * a[2][1] * a[3][2] * a[4][3]) -
		              ((a[1][4] * a[2][3] * a[3][2] * a[4][1]) +
		               (a[1][3] * a[2][2] * a[3][1] * a[4][4]) +
		               (a[1][2] * a[2][1] * a[3][4] * a[4][3]) +
		               (a[1][1] * a[2][4] * a[3][3] * a[4][2])));
	}
	if (sign >= 5)
	{
		sum.push_back(((a[1][1] * a[2][2] * a[3][3] * a[4][4] * a[5][5]) +
		               (a[1][2] * a[2][3] * a[3][4] * a[4][5] * a[5][1]) +
		               (a[1][3] * a[2][4] * a[3][5] * a[4][1] * a[5][2]) +
		               (a[1][4] * a[2][5] * a[3][1] * a[4][2] * a[5][3]) +
		               (a[1][5] * a[2][1] * a[3][2] * a[4][3] * a[5][4])) -
		              ((a[1][5] * a[2][4] * a[3][3] * a[4][2] * a[5][1]) +
		               (a[1][4] * a[2][3] * a[3][2] * a[4][1] * a[5][5]) +
		               (a[1][3] * a[2][2] * a[3][1] * a[4][5] * a[5][4]) +
		               (a[1][2] * a[2][1] * a[3][5] * a[4][4] * a[5][3]) +
		               (a[1][1] * a[2][5] * a[3][4] * a[4][3] * a[5][2])));
	}
	sort(sum.begin(), sum.end());
	cout << sum[0] << endl;
	return 0;
}

方法二,按i行或j列展开计算(代数余子式法):

#include <iostream>
#include <vector>
#include <limits>

using namespace std;

// 计算一个 n x n 行列式的函数
int determinant(vector<vector<int>>& matrix, int n)
{
	int det = 0;  // 初始化行列式的值
	if (n == 1)
	{
		// 如果是 1x1 矩阵,直接返回其唯一元素
		return matrix[0][0];
	}
	if (n == 2)
	{
		// 如果是 2x2 矩阵,使用简单的行列式公式计算
		return matrix[0][0] * matrix[1][1] - matrix[0][1] * matrix[1][0];
	}

	// 对于 n >= 3 的情况,使用递归计算行列式
	for (int p = 0; p < n; p++)
	{
		// 创建子矩阵,排除当前列 p
		vector<vector<int>> submatrix(n - 1, vector<int>(n - 1));
		for (int i = 1; i < n; i++)
		{
			int j_sub = 0;
			for (int j = 0; j < n; j++)
			{
				if (j == p) continue;  // 跳过当前列
				submatrix[i - 1][j_sub] = matrix[i][j];  // 复制元素到子矩阵
				j_sub++;
			}
		}
		// 递归调用行列式函数并累加结果
		det += (p % 2 == 0 ? 1 : -1) * matrix[0][p] * determinant(submatrix, n - 1);
	}
	return det;  // 返回计算得到的行列式值
}

int main()
{
	int n, m;
	cin >> n >> m;  // 读取矩阵的行数和列数

	// 创建 n x m 的矩阵并读取数据
	vector<vector<int>> matrix(n, vector<int>(m));
	for (int i = 0; i < n; i++)
	{
		for (int j = 0; j < m; j++)
		{
			cin >> matrix[i][j];
		}
	}

	int max_dim = max(n, m);  // 取行和列的最大值作为处理的维度
	int min_det = numeric_limits<int>::max();  // 初始化最小行列式为最大整数

	// 对每个可能的大小的矩阵(1x1 到 max_dim x max_dim)进行行列式计算
	for (int size = 1; size <= max_dim; size++)
	{
		// 创建扩展矩阵,大小为 max_dim x max_dim,默认填充为0
		vector<vector<int>> extended_matrix(max_dim, vector<int>(max_dim, 0));

		// 初始化扩展矩阵,将原矩阵的元素复制到扩展矩阵
		for (int i = 0; i < n; i++)
		{
			for (int j = 0; j < m; j++)
			{
				extended_matrix[i][j] = matrix[i][j];
			}
		}

		// 使用从(0, 0)开始的 size x size 子矩阵计算行列式
		int det = determinant(extended_matrix, size);
		// 更新最小行列式值
		min_det = min(min_det, det);
	}

	// 输出最终计算得到的最小行列式值
	cout << min_det << endl;

	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值