【基础算法总结】前缀和

一,前缀和算法介绍

前缀和也是基础算法之一,它一般应用于快速求出某个连续区间的和/积。前缀和一般包括一维前缀和,二维前缀和,其实它的做题流程有一点点像动态规划的感觉前缀和算法的时间复杂度是O(1)

前缀和与二分查找类似,也是有固定模板的,下面的前两题分别就是一维/二维的前缀和模板题

二,算法原理和代码实现

【模板】前缀和

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

算法原理:

解法1:暴力解法,O(n*q)。就是根据它给的区间,一个一个数加起来,绝对超时

解法2:前缀和,O(q)+O(n)
使用前缀和算法的固定流程
(1) 预处理出来一个前缀和数组
创建一个dp数组,与原数组同规模大小
dp中每个元素 dp[i] 表示:arr数组中 [1,i ] 区间所有元素的和
可得递推公式:dp[i] = dp[i - 1] + arr[i]
在这里插入图片描述
(2) 使用前缀和数组
就是处理每次查询,此时要输入两个数 left 和 right 表示查询区间
通过分析可以发现:arr 数组里 [left, right] 的区间数据和 = dp[right] - dp[left - 1]
在这里插入图片描述

细节问题:

为什么下标要从1开始
如果下标从0开始,会出现边界问题 ,根据上面的公式分析
在这里插入图片描述
下标从1开始就是为了处理边界情况

代码实现:

#include <iostream>
#include <vector>
using namespace std;

int main() 
{
   // 读入数据
   int n, q;
   cin >> n >> q;
   vector<int> arr(n+1);
   for(int i = 1; i <=n; i++)
        cin >> arr[i];

    // 预处理前缀和数组
    vector<long long> dp(n+1); // 防溢出
    for(int i = 1; i <= n; i++)
        dp[i] = dp[i-1] + arr[i];
    
    // 使用前缀和数组
    while(q--)
    {
        int left, right;
        cin >> left >> right;
        cout << dp[right] - dp[left-1] << endl;
    }
}

【模板】二维前缀和

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

算法原理:

解法1:暴力解法,O(n * m * q)。就是根据给的两个坐标,一个一个数加,绝对超时

解法2:前缀和,O(m * n)+O(q)
下面的内容将详细介绍前缀和矩阵的处理和使用:

(1) 预处理出一个前缀和矩阵
创建一个前缀和数组dp,大小规模与arr相同
dp[i][j] 表示:从[1][1] 位置到 [i][j] 位置,这段区间里面所有元素和
以arr矩阵中的 [i][j] 位置为参考,可以把arr矩阵分成4块:
dp[i][j] = dp[i - 1][j] + dp[i][j - 1] + arr[i][j] - dp[i - 1][j - 1]
(2) 使用前缀和矩阵
输入两个查询坐标(x1,y1)和(x2,y2),输出以 (x1, y1) 为左上角 , (x2,y2) 为右下角的子矩阵的和
在arr矩阵中以这两个坐标为参考,可把矩阵分成4块:
子矩阵的和 = dp[x2][y2] - dp[x1 - 1][y2] - dp[x2][y1 - 1] + dp[x1 - 1][y1 - 1]

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

细节处理:

参考上一题

代码实现:

#include <iostream>
#include <vector>
using namespace std;

int main() 
{
   int n, m, q;
   cin >> n >> m >> q;
   // 输入数据
   vector<vector<long long>> arr(n+1, vector<long long>(m+1));
   for(int i = 1; i <= n; i++)
        for(int j = 1; j <= m; j++)
            cin >> arr[i][j];

    // 预处理前缀和矩阵
    vector<vector<long long>> dp(n+1, vector<long long>(m+1));
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= m; j++)
            dp[i][j] = dp[i-1][j] + dp[i][j-1] + arr[i][j] - dp[i-1][j-1];

    // 使用前缀和数组
    int x1, y1, x2, y2;
    while(q--)
    {
        cin >> x1 >> y1 >> x2 >> y2;
        cout << dp[x2][y2] - dp[x1-1][y2] - dp[x2][y1-1] + dp[x1-1][y1-1] << endl;
    }
}

724.寻找数组的中心下标

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

算法原理:

解法1:暴力求解,O(N^2)。遍历数组,每次固定一个下标,再分别计算左右两边区间的和,进行比较,绝对超时

解法2:使用前缀和思想
(1) 预处理
由于会涉及前后两个区间的求和所以在预处理时定义一个f表示前缀和数组,g表示后缀和数组
在这里插入图片描述
(2) 使用数组
然后只需要遍历一遍数组,每次固定一个下标,判断 f[i] == g[i] ,如果相等则返回 i,否则返回 -1

细节问题:

(1) 根据 f 和 g 的递推公式,填 f[0] 时会越界,填 g[n-1] 时,也会越界,所以要先初始化 f[0] = g[n-1] = 0
(2) 在填dp表时,前缀和数组f从前往后填,后缀和数组g从后往前填

代码实现:

class Solution 
{
public:
    int pivotIndex(vector<int>& nums) 
    {
        int n = nums.size();
        // 预处理前缀和,后缀和数组
        vector<int> f(n);
        vector<int> g(n);
        f[0] = 0, g[n-1] = 0; // 初始化

        for(int i = 1; i < n; i++)
            f[i] = f[i-1] + nums[i-1];

        for(int j = n-2; j >= 0; j--)
            g[j] = g[j+1] + nums[j+1];
        
        // 使用数组
        for(int k = 0; k < n; k++)
            if(f[k] == g[k])
                return k;
        
        return -1;
    }
};

238.除自身以外数组的乘积

在这里插入图片描述
在这里插入图片描述

算法原理:

这道题和上一题基本上是一模一样的,也使用前缀和思想,只是本题是算乘法,上一题是算加法

(1) 预处理
由于会涉及前后两个区间的乘积所以在预处理时定义一个f表示前缀积数组,g表示后缀积数组
在这里插入图片描述
(2) 使用数组
在这里插入图片描述

细节问题:

(1) 根据 f 和 g 的递推公式,填 f[0] 时会越界,填 g[n-1] 时,也会越界,所以要先初始化 f[0] = g[n-1] = 1
(2) 在填dp表时,前缀和数组f从前往后填,后缀和数组g从后往前填

代码实现:

class Solution 
{
public:
    vector<int> productExceptSelf(vector<int>& nums) 
    {
        // 预处理前缀积,后缀积数组
        int n = nums.size();
        vector<int> f(n), g(n);
        f[0] = g[n-1] = 1; // 初始化

        for(int i = 1; i < n; i++)
            f[i] = f[i-1] * nums[i-1];
        
        for(int j = n-2; j >= 0; j--)
            g[j] = g[j+1] * nums[j+1];

        // 使用数组
        vector<int> ret;
        for(int k = 0; k < n; k++)
            ret.push_back(f[k] * g[k]);

        return ret;
    }
};

560.和为k的子数组

在这里插入图片描述
在这里插入图片描述

算法原理:

我们在 [滑动窗口] 系列中做过一道和本题十分类似的,只不过那道题目中的数据都是正整数,一直累加,结果是单调递增的,所以才可以用 “滑动算法"思想(本质就是"同向双指针”)进行优化。但是这道题中有0和负数,相加的结果不是单调递增的,不能使用 “滑动窗口”

这道题可以使用:前缀和+哈希表
我们引入"以 i 位置为结尾的所有的子数组",如图,所以可以把题目中要求的"和为 k 的子数组",转化成:在区间 [0, i-1] 中,有多少个前缀和等于 sum[i] - k
如何快速的统计前缀和个数呢?就要使用哈希表,把每次计算的 sum[i] - k 都扔进哈希表中,同时统计次数

下图里绿色部分的表示前缀和
在这里插入图片描述

细节问题:

(1) 前缀和加入哈希表的时机
在计算 i 位置之前,哈希表里面只保存 [0, i-1] 位置的前缀和
(2) 不用真的创建一个前缀和数组
用一个变量 sum 来标记前一个位置的前缀和即可
(3) 如果整个前缀和等于 k 呢
要在创建哈希表后初始化:hash[0] = 1。就相当于数组默认有一个前缀和为0的子数组

代码实现:

class Solution 
{
public:
    int subarraySum(vector<int>& nums, int k) 
    {
        unordered_map<int, int> hash; // 统计前缀和出现的次数
        hash[0] = 1;
        
        int sum = 0, ret = 0;
        for(auto e : nums)
        {
            sum += e; // 计算当前位置的前缀和
            if(hash.count(sum - k)) ret += hash[sum - k]; // 统计个数
            hash[sum]++; // 把当前的前缀和扔进哈希表
        }
        return ret;
    }
};

974.和可被k整除的子数组

在这里插入图片描述
在这里插入图片描述

算法原理:
这道题和上一题太相似了,并且也不能用"滑动窗口"优化,原因同上

在解决这题之前,先补充两个涉及的知识
(1) 同余定理若两数之差整除 p,则这两个数分别对 p 取模,余数相等
在这里插入图片描述
(2) C++中,[负数 % 正数] 的结果以及修正
在C++中,[负数 %(取模) 正数] 的结果是一个负数,如果想把这个负数修正为正确的正数
在这里插入图片描述

与上一题相同,本题还是使用:前缀和+哈希表
我们也引入"以 i 位置为结尾的所有的子数组",如图,所以可把本题中要求的"和可被 k 整除的非空子数组的数目"转化为:在 [0, i-1] 区间中,找到有多少个前缀和的余数等于 (sum % k + k) % k
如何快速的统计前缀和个数呢?就要使用哈希表。把每次计算的 (sum % k + k) % k 都扔进哈希表中,同时统计次数

下图里绿色部分的表示前缀和
在这里插入图片描述

细节问题:
参考上一题

代码实现:

class Solution 
{
public:
    int subarraysDivByK(vector<int>& nums, int k) 
    {
        unordered_map<int, int> hash; 
        hash[0 % k] = 1; // 0这个数的余数

        int sum = 0, ret = 0;
        for(auto x : nums)
        {
            sum += x;
            int r = (sum % k + k) % k; // 修正后的余数
            if(hash.count(r) ret += hash[r]; // 统计结果
            hash[r]++;
        }
        return ret;
    }
};

525.连续数组

在这里插入图片描述
在这里插入图片描述

算法原理:

这道题如果按题目要求直接找相同数量0和1的最长子数组会难度很大。但是如果我们把数组中所有的 0 改成 -1,本题就可以转换成:在数组中,找出最长的子数组,使子数组中所有元素和为0。那它的算法思路就和前文的 [560.和为 k 的子数组] 一模一样了

转化后,使用:前缀和+哈希表
具体的算法思路参考 [560.和为 k 的子数组]

魔鬼细节问题:

(1) 哈希表里存什么?
根据题目要求,存的应该是前缀和的最大长度(下标)
(2) 什么时候存入哈希表?
和上面一样,在计算 i 位置之前,丢进哈希表
(3) 如果有重复的 < sum, i>,如何存?
就是在遍历到 i 位置时,发现前面 j 位置的前缀和也等于 sum ,要把两个 sum 都入哈希表吗?不需要,因为要求最大长度只保留前面的那一对 < sum, i>
在这里插入图片描述
(4) 默认的前缀和为0的情况,如何存?
创建哈希表后,初始化:hash[0] = -1。
在这里插入图片描述
(5) 长度怎么算?
因为 [i, j] 是闭区间,计算区间元素是 i - j + 1个,但是这里多算了一个 j 位置,所以还要 -1
在这里插入图片描述

代码实现:

class Solution 
{
public:
    int findMaxLength(vector<int>& nums) 
    {
        unordered_map<int, int> hash;
        hash[0] = -1; // 默认有一个前缀和为 0 的情况

        int sum = 0, ret = 0;
        for(int i = 0; i < nums.size(); i++)
        {
            // 计算当前位置前缀和,把 -1 变 0
            sum += nums[i] == 0 ? -1 : 1; 

            // 如果已经存在了,就不入哈希,更新长度,不存在就入哈希
            if(hash.count(sum)) ret = max(ret, i - hash[sum]);
            else hash[sum] = i;
        }
        return ret;
    }
};

1314.矩阵区域和

在这里插入图片描述
在这里插入图片描述

算法原理:

先理解题目意思
在这里插入图片描述

很显然,本题要使用二维前缀和。
二维前缀和的预处理矩阵dp的递推公式和使用dp矩阵都在第二题中有详细介绍,这里不再赘述

细节问题:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

代码实现:

class Solution 
{
public:
    vector<vector<int>> matrixBlockSum(vector<vector<int>>& mat, int k) 
    {
        int m = mat.size(), n = mat[0].size();
        vector<vector<int>> dp(m+1, vector<int>(n+1));

        // 预处理前缀和矩阵
        for(int i = 1; i <= m; i++)
            for(int j = 1; j <= n; j++)
                dp[i][j] = dp[i-1][j] + dp[i][j-1] - dp[i-1][j-1] + mat[i-1][j-1];

        // 使用前缀和矩阵
        vector<vector<int>> ans(m, vector<int>(n));
        int x1 = 0, y1 = 0, x2 = 0 ,y2 = 0;
        for(int i = 0; i < m; i++)
        {
            for(int j = 0; j < n; j++)
            {
                x1 = max(0, i-k) + 1, y1 = max(0, j-k) + 1;
                x2 = min(i+k, m-1) + 1, y2 = min(j+k, n-1) + 1;
                ans[i][j] = dp[x2][y2] - dp[x1-1][y2] - dp[x2][y1-1] + dp[x1-1][y1-1];
            }
        }
        return ans;
    }
};

三,算法总结

通过上面若干道题目要掌握使用前缀和的两个步骤:一是预处理前缀和数组,这里要先明确 dp[i][j] 的含义,再推导递推公式,二是使用前缀和数组,其实就是在预处理好的 dp 数组中直接拿值,这一步的时间复杂度是O(1)。要注意的细节点就是使用原数组填 dp 数组的边界问题

评论 77
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值