P5691 [NOI2001] 方程的解数

[NOI2001] 方程的解数

题目描述

已知一个 n n n 元高次方程:
∑ i = 1 n k i x i p i = 0 \sum\limits_{i=1}^n k_ix_i^{p_i} = 0 i=1nkixipi=0
其中: x 1 , x 2 , … , x n x_1, x_2, \dots ,x_n x1,x2,,xn 是未知数, k 1 , k 2 , … , k n k_1,k_2, \dots ,k_n k1,k2,,kn 是系数, p 1 , p 2 , … p n p_1,p_2,…p_n p1,p2,pn 是指数。且方程中的所有数均为整数。

假设未知数 x i ∈ [ 1 , m ]   ( i ∈ [ 1 , n ] ) x_i \in [1,m] \space ( i \in [1,n]) xi[1,m] (i[1,n]),求这个方程的整数解的个数。

输入格式

第一行一个正整数 n n n,表示未知数个数。
第二行一个正整数 m m m
接下来 n n n 行,每行两个整数 k i , p i k_i,p_i ki,pi

输出格式

输出一行一个整数,表示方程解的个数。

样例 #1

样例输入 #1

3
150
1 2
-1 2
1 2

样例输出 #1

178

提示

【数据范围】

对于 100 % 100\% 100% 的数据, 1 ≤ n ≤ 6 1\le n \le 6 1n6 1 ≤ m ≤ 150 1\le m \le 150 1m150,且
∑ i = 1 n ∣ k i m p i ∣ < 2 31 \sum\limits_{i=1}^n |k_im^{p_i}| < 2^{31} i=1nkimpi<231
答案不超过 2 31 − 1 2^{31}-1 2311 p i ∈ N ∗ p_i \in \mathbb N^* piN

分析

数据较小,使用折半搜索,每个搜索搜一半,先枚举出每个可能性,再查找即可

代码

#include <bits/stdc++.h>
using namespace std;
const int M = 1e7;
int n, m, tot, ans;
int b[M];
int k[10], p[10];
void read() {
	cin >> n >> m;
	for (int i = 1; i <= n; i++) cin >> k[i] >> p[i];
}
int powm(int x, int b) {
	if (b == 0) return 1;
	int res = pow(x, b >> 1);
	if (b % 2 == 0) return res * res;
	return res * res * x;
}
void dfs1(int i,int sum) {
	if (i > n) { b[++tot] = -sum; return; }
	for (int x = 1; x <= m; x++) {
		int t = powm(x, p[i]) * k[i];
		dfs1(i + 1, sum + t);
	}
}
void dfs2(int i, int sum) {
	if (i > n / 2) {
		int res = upper_bound(b + 1, b + 1 + tot, sum) - lower_bound(b + 1, b + 1 + tot, sum);
		ans += res; return;
	}
	for (int x = 1; x <= m; x++) {
		int t = powm(x, p[i]) * k[i];
		dfs2(i + 1, sum + t);
	}
}
int main() {
	read();
	dfs1(n / 2 + 1, 0);
	sort(b + 1, b + 1 + tot);
	dfs2(1, 0);
	cout << ans;
	return 0;
}

分析

int powm(int x, int b) {
	if (b == 0) return 1;
	int res = pow(x, b >> 1);
	if (b % 2 == 0) return res * res;
	return res * res * x;
}

由于是高次方程,可以使用快速幂优化

void dfs1(int i,int sum) {
	if (i > n) { b[++tot] = -sum; return; }
	for (int x = 1; x <= m; x++) {
		int t = powm(x, p[i]) * k[i];
		dfs1(i + 1, sum + t);
	}
}

由于 x ∈ [ 1 , m ] x \in [1,m] x[1,m],所以枚举每个x的值,算出一半的答案,记录在数组中

void dfs2(int i, int sum) {
	if (i > n / 2) {
		int res = upper_bound(b + 1, b + 1 + tot, sum) - lower_bound(b + 1, b + 1 + tot, sum);
		ans += res; return;
	}
	for (int x = 1; x <= m; x++) {
		int t = powm(x, p[i]) * k[i];
		dfs2(i + 1, sum + t);
	}
}

与dfs1基本相同,但搜索完毕后记得统计答案数,更新ans即可

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值