【算法】C++深度优先搜索(DFS)全解析

📢博客主页:https://blog.csdn.net/2301_779549673
📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!
📢本文由 JohnKi 原创,首发于 CSDN🙉
📢未来很长,值得我们全力奔赴更美好的生活✨

在这里插入图片描述

在这里插入图片描述


🏳️‍🌈一、DFS 的基础概念

深度优先搜索(DFS)是一种用于遍历或搜索树或图数据结构的算法。其核心原理是从起始顶点开始,沿着路径尽可能深地探索,直到无法继续前进时才回溯。

DFS 的工作方式类似于在迷宫中探索,一旦进入一个通道,就尽可能地沿着这个通道走到底,直到遇到死胡同或者已经没有未访问的分支,然后再回溯到上一个岔路口,尝试其他路径。形象地说,DFS 就像是一个勇敢的探险家,不断深入未知领域,只有在走投无路时才会回头寻找其他可能性。

在 C++ 中,DFS 可以通过递归或者显式栈来实现。例如,在解决迷宫问题时,我们可以用一个二维数组模拟平面,用一个数组记录坐标是否被访问过,然后从起点开始,使用 DFS 算法不断尝试向四个方向移动,直到找到终点或者遍历完所有可能的路径。

在图的遍历中,DFS 从一个起始节点开始,标记该节点为已访问,然后遍历该节点的所有邻居。如果邻居未被访问,则继续对该邻居进行深度优先搜索。这种方式可以确保图中的每个节点都被访问到,并且可以用于检测图的连通性、寻找路径等问题。
例如,对于一个有向无环图,DFS 可以用于拓扑排序,确定节点的线性排序。在树的遍历中,DFS 可以用于前序、中序、后序遍历,帮助我们更好地理解树的结构和性质。

总之,DFS 是一种强大的算法,在 C++ 编程中有着广泛的应用,可以帮助我们解决各种复杂的问题。

🏳️‍🌈二、DFS 的实现方式

在这里插入图片描述

❤️(一)递归实现

在 C++ 中,使用递归实现 DFS 具有简洁易懂的特点。递归实现利用函数调用栈隐式地进行回溯,代码结构清晰,易于理解和实现。以图的遍历为例,递归函数接受当前节点、图的邻接表和访问标记数组为参数,首先标记当前节点为已访问,然后遍历当前节点的所有邻居节点。如果邻居节点尚未访问,则递归地进行深度优先搜索。这种方式使得代码逻辑直观,对于小型图或者树的遍历非常高效。

然而,在遍历大图时,递归实现可能会导致栈溢出问题。这是因为递归调用会在栈上分配空间,当递归深度过大时,栈空间可能会耗尽。例如,在处理非常深的树或者大规模的图时,递归实现可能会因为栈溢出而失败。据统计,在一些实际应用中,当图的节点数超过一定数量(如几万甚至更多)时,递归实现的 DFS 就有可能出现栈溢出问题。

🧡(二)迭代实现

使用栈进行迭代实现 DFS 可以避免在深度较大的图中出现栈溢出风险。迭代实现使用显式栈来模拟递归的过程,每次从栈中取出一个节点,访问其邻居,并将未访问的邻居压入栈。这种方式不依赖于函数调用栈,因此可以处理深度较大的图而不会出现栈溢出问题。

在迭代实现中,我们首先创建一个栈和一个访问标记数组。将起始节点压入栈中,并标记为已访问。然后,在循环中,不断从栈中取出节点进行访问。如果取出的节点尚未访问,则访问该节点,并将其邻居节点压入栈中。通过这种方式,我们可以确保图中的每个节点都被访问到。

与递归实现相比,迭代实现的代码较为冗长,但更加健壮。它可以处理大规模的图,并且可以更好地控制遍历的过程。例如,在处理复杂的图结构时,我们可以根据需要对栈的操作进行优化,以提高遍历的效率。

🏳️‍🌈三、DFS 的应用场景

❤️(一)路径发现

在迷宫问题中,DFS 可以用于寻找从起点到终点的路径。例如,在一个二维迷宫中,我们可以将迷宫看作一个图,每个格子是一个节点,相邻的格子之间有边连接。从起点开始,使用 DFS 不断尝试向四个方向移动,直到找到终点或者遍历完所有可能的路径。在这个过程中,我们可以记录下路径上的节点,以便在找到终点后回溯得到完整的路径。据实际测试,对于一个中等规模的迷宫(如 10x10 的迷宫),DFS 可以在较短的时间内找到路径。

🧡(二)拓扑排序

在有向无环图中,DFS 可以用于拓扑排序。拓扑排序的目标是将图中的节点按照依赖关系进行排序,使得对于任意一条有向边 (u, v),节点 u 在排序后的序列中出现在节点 v 之前。通过对图进行 DFS,并在回溯时将节点加入到排序结果中,可以得到一个满足拓扑顺序的序列。例如,在任务调度问题中,每个任务可能依赖于其他任务的完成,使用拓扑排序可以确定任务的执行顺序,确保所有任务能够按照正确的顺序完成。

💛(三)解决谜题和游戏

在一些谜题和游戏中,DFS 也有广泛的应用。比如八皇后问题,要求在一个 8x8 的棋盘上放置 8 个皇后,使得它们不能相互攻击。可以使用 DFS 遍历所有可能的放置方案,找到满足条件的解。在这个过程中,每次尝试在一个位置放置皇后,如果放置后不满足条件,则回溯到上一步重新尝试。据统计,通过 DFS 可以在合理的时间内找到八皇后问题的所有 92 组解。

💚(四)连通性检测

对于一个图,DFS 可以用于检测其连通性。从图中的任意一个节点开始进行 DFS,如果能够访问到图中的所有节点,则说明该图是连通的;否则,图是不连通的。例如,在网络拓扑结构中,我们可以使用 DFS 来检测网络中的节点是否都能够相互通信。如果网络是连通的,那么从任何一个节点发送的数据都可以到达其他所有节点;如果网络不连通,则需要采取相应的措施来确保数据的传输。

💙(五)生成迷宫

DFS 可以用于生成随机迷宫。一种常见的方法是从一个随机的起点开始,不断地随机选择一个未访问的相邻节点进行扩展,直到无法继续扩展为止。在这个过程中,我们可以记录下路径,从而生成一个迷宫。例如,使用 DFS 生成一个 10x10 的迷宫,通常可以在几毫秒内完成。生成的迷宫具有随机性和复杂性,可以用于游戏开发或者算法测试。

🏳️‍🌈四、DFS 的具体应用示例

❤️(一)迷宫问题

在解决迷宫问题时,我们可以使用 DFS 来寻找从起点到终点的路径。具体实现可以通过递归或者迭代的方式进行。以递归方式为例,我们从起点开始,检查当前位置的四个方向(上、下、左、右)是否可行。如果可行,则继续向该方向进行深度优先搜索,直到找到终点或者无法继续前进。在搜索过程中,我们可以使用一个二维数组来记录已经访问过的位置,以避免重复访问。同时,我们可以使用一个栈或者向量来保存探索过程中的坐标,以便在找到终点后回溯得到完整的路径。

例如,以下是使用递归方式解决迷宫问题的 C++ 代码示例:

#include<iostream>
#include<vector>
const int N = 10; // 迷宫尺寸
int maze[N][N] = {
    // 迷宫地图,1表示墙,0表示通道
{
   1,1, 1, 1, 1, 1, 1, 1, 1, 1},
{
   1,0, 0, 0, 1, 0, 0, 0, 0, 1},
{
   1,0, 1, 0, 1, 0, 1, 1, 0, 1},
{
   1,0, 0, 1, 0, 0, 0, 0, 0, 1},
{
   1,0, 1, 0, 0, 1, 0, 1, 0, 1},
{
   1,0, 0, 0, 1, 0, 0, 0, 0, 1},
{
   1,0, 1, 0, 1, 0, 1, 0, 1, 1},
{
   1,0, 0, 0, 0, 0, 0, 0, 0, 1},
{
   1,0, 1, 0, 1, 0, 1, 1, 0, 1},
{
   1,1, 1, 1, 1, 1, 1, 1, 1, 1}
};
std::vector<std::pair<int, int>> path
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值