大模型在办公方向的实践与思考某著名企业(38页PPT)(文末有下载方式)

资料解读:大模型在办公方向的实践与思考某著名企业

详细资料请看本解读文章的最后内容。在当今数字化办公的大趋势下,大模型技术正逐渐渗透到办公领域的各个角落,为办公效率的提升和办公体验的优化带来了新的可能。某著名企业在大模型办公应用方面进行了诸多实践与探索,成果斐然。

某著名企业在办公场景中积极引入大模型技术,带来了一系列创新应用。以 AI 助理为例,它能够生成周报,帮助员工快速总结工作内容,节省时间和精力。在文档处理方面,不仅可以实现文档翻译,打破语言壁垒,还能进行文档 LUI(可能是指文档的某种交互优化,具体需结合更多背景信息确定),提升文档处理的便捷性。白板功能也因大模型的加入变得更加智能,支持涂鸦作画、图片风格迁移以及智能海报制作,为创意表达和视觉展示提供了更多可能性。在即时通讯(IM)场景中,大模型实现了文件、视频和图片的速读,帮助用户快速获取关键信息,提高信息处理效率。

深入探究大模型训练,其过程有着独特的起手式和核心流程。训练起手式中,微调是关键环节。微调是基于预训练好的大模型,利用特定数据集进一步训练,使模型适应特定任务或领域,主要实现知识注入和指令对齐,激发模型解决问题的能力,让模型准确理解用户指令并给出合理输出。在核心流程中,首先要标注数据用于 SFT(Supervised Fine-Tuning,监督微调),接着根据人类反馈训练奖励模型,再通过强化学习优化模型。在产品设计上,会生成多种结果让用户选择,并将用户点赞和点踩的反馈数据回流,以不断优化模型。

SFT 与 RLHF(Reinforcement Learning from Human Feedback,基于人类反馈的强化学习)在大模型训练中起着重要作用。此外,还有 DPO(Direct Preference Optimization,直接偏好优化),它和 RLHF 目的相同,都是使模型输出更符合人类喜好,但 DPO 性能和计算成本更轻量级,不依赖明确的奖励建模或强化学习。在 SFT 常用方法上,有多种选择。LoRA 方法是在原模型旁增加旁路,通过低秩分解模拟参数更新,训练时只需训练特定矩阵,成本较低。Full Parameter Fine Tuning 则是更新所有参数,能最大程度优化模型对新任务的理解,但训练成本高。Adapter-based Tuning 以串行形式加入模块,不过会使推理速度降低,实际部署中较少考虑。Prefix Tuning 在每个 Attention 层加入 Prefix Embedding 增加额外参数。

在大模型训练过程中,数据的重要性不可忽视。在选择预训练模型时,无论是 Chat model 还是 base model,都要谨慎考虑数据因素。过于领域化的数据可能导致灾难性遗忘,但在某些业务场景中,可通过意图识别和业务专属模型解决。同时,数据过多可能引发过拟合问题。在文本数据方面,短文本多涉及用户交互,而长文本多以 “文件” 形式表达,“文档理解” 成为关键。此外,像 LR(学习率)、warmup(预热步骤)、Epoch(训练轮数)等参数的设置,目的是让 Loss 更快收敛,优化模型训练效果。

从具体办公场景分析来看,在文档生成长图场景中,某著名企业文档可转换为多种类型文档,如长图、PDF、word、ppt 等,并且支持各类型文件的相互转换,满足了不同用户在不同场景下的文档格式需求。在文档速读场景里,文档与大模型的交互效果取决于文档还原度,同时还要解决超大文档、超长文档的处理难题。文档问答场景则依赖 RAG(Retrieval-Augmented Generation,检索增强生成)技术,包括文档理解、分片、向量化,Query 优化、召回策略以及排序策略等环节,在架构和产品设计上遵循先学习再检索的原则。

以 AIPPT 的大模型训练实践为例,其核心任务是生成 PPT,训练目标聚焦于 PPT 内存结构。在复杂场景下的推理与训练中,采用分治推理方案,用树描述整体任务并进行遍历推理。在训练时,需要具备拆解任务、叶子结点独立计算以及任务回溯父节点的数据集,以保障训练的有效性和准确性。

展望未来,大模型在办公领域的发展面临着诸多挑战与机遇。安全问题至关重要,包括模型训练的数据安全和模型应用的数据安全,只有确保数据安全,才能让用户放心使用。同时,持续提升大模型效果、降低成本也是关键。随着技术的不断发展,多模态技术迅速崛起,未来大模型有望融合更多模态信息,如语音、图像等,为办公场景带来更加丰富和智能的体验。

大模型在某著名企业办公方向的实践已经取得了显著成果,但仍有很大的发展空间。相关从业者需要不断探索和创新,以应对各种挑战,充分挖掘大模型在办公领域的潜力。接下来请您阅读下面的详细资料吧。

篇幅所限,本文只能提供部分资料内容,完整资料请看下面链接

https://download.csdn.net/download/2301_78256053/88233447

### 解决PyCharm无法加载Conda虚拟环境的方法 #### 配置设置 为了使 PyCharm 能够成功识别并使用 Conda 创建的虚拟环境,需确保 Anaconda 的路径已正确添加至系统的环境变量中[^1]。这一步骤至关重要,因为只有当 Python 解释器及其关联工具被加入 PATH 后,IDE 才能顺利找到它们。 对于 Windows 用户而言,在安装 Anaconda 时,默认情况下会询问是否将它添加到系统路径里;如果当时选择了否,则现在应该手动完成此操作。具体做法是在“高级系统设置”的“环境变量”选项内编辑 `Path` 变量,追加 Anaconda 安装目录下的 Scripts 文件夹位置。 另外,建议每次新建项目前都通过命令行先激活目标 conda env: ```bash conda activate myenvname ``` 接着再启动 IDE 进入工作区,这样有助于减少兼容性方面的问题发生概率。 #### 常见错误及修复方法 ##### 错误一:未发现任何解释器 症状表现为打开 PyCharm 新建工程向导页面找不到由 Conda 构建出来的 interpreter 列表项。此时应前往 Preferences/Settings -> Project:...->Python Interpreter 下方点击齿轮图标选择 Add...按钮来指定自定义的位置。按照提示浏览定位到对应版本 python.exe 的绝对地址即可解决问题。 ##### 错误二:权限不足导致 DLL 加载失败 有时即使指定了正确的解释器路径,仍可能遇到由于缺乏适当的操作系统级许可而引发的功能缺失现象。特别是涉及到调用某些特定类型的动态链接库 (Dynamic Link Library, .dll) 时尤为明显。因此拥有管理员身份执行相关动作显得尤为重要——无论是从终端还是图形界面触发创建新 venv 流程均如此处理能够有效规避此类隐患。 ##### 错误三:网络连接异常引起依赖下载超时 部分开发者反馈过因网速慢或者其他因素造成 pip install 操作中途断开进而影响整个项目的初始化进度条卡住的情况。对此可尝试调整镜像源加速获取速度或是离线模式预先准备好所需资源包后再继续后续步骤。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab@com

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值