代码随想录算法训练营第五十天|动态规划part11|● 123.买卖股票的最佳时机III ● 188.买卖股票的最佳时机IV

文章介绍了两个使用动态规划解决的股票交易问题,LeetCode上的123题和188题。这两个问题涉及在给定限制条件下找到买卖股票的最大利润。通过维护不同状态的转移方程,例如持有和不持有股票的状态,以及考虑多次交易的可能性,计算出最优策略。
摘要由CSDN通过智能技术生成

●  123.买卖股票的最佳时机III  Best Time to Buy and Sell Stock III - LeetCode

dp[i][0] 不操作

dp[i][1] 第一次持有

dp[i][2] 第一次不持有

dp[i][3] 第二次持有

dp[i][4] 第二次不持有

dp[i][0] = dp[i - 1][0]

dp[i][1] = Max(dp[i - 1][1], dp[i-1][0] - prices[i])

dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i])

dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i])

dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i])

dp[0][0] = 0;

dp[0][1] = -prices[0]

dp[0][2] = 0;

dp[0][3] = -prices[0];

dp[0][4] = 0;

可以当天买卖

遍历顺序:从小到大

打印dp数组

一次过,震惊

class Solution {
    public int maxProfit(int[] prices) {
        int[][] dp = new int[prices.length][5];
        //没有操作
        dp[0][0] = 0;
        //第一次买入
        dp[0][1] = -prices[0];
        //第一次卖出
        dp[0][2] = 0;
        //第二次买入
        dp[0][3] = -prices[0];
        //第二次卖出
        dp[0][4] = 0;

        for (int i = 1; i < prices.length; i++) {
            dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
            dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
            dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
            dp[i][4] = Math.max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
        }
        return dp[prices.length - 1][4];
    }
}

●  188.买卖股票的最佳时机IV Best Time to Buy and Sell Stock IV - LeetCode

dp[i][0] 不操作

dp[i][1]买入

dp[i][2] 卖出

j 一次跳跃两次

j + 1,买入

j + 2,卖出 

for (j = 0; j < 2 * k; j += 2)

        dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);

        dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);

class Solution {
    public int maxProfit(int k, int[] prices) {
        if (prices.length == 0) return 0;
        int n = prices.length;
        int[][] dp = new int[n][2 * k + 1];

        for (int j = 1; j < 2 * k; j += 2) {
            dp[0][j] = -prices[0];
        }

        for (int i = 1; i < n; i++) {
            for (int j = 0; j < 2 * k - 1; j += 2) {
                dp[i][j + 1] = Math.max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
                dp[i][j + 2] = Math.max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
            }
        }
        return dp[n - 1][2 * k];
    }
}

代码随想录算法训练营是一个优质的学习和讨论平台,提供了丰富的算法训练内容和讨论交流机会。在训练营中,学员们可以通过观看视频讲解来学习算法知识,并根据讲解内容进行刷题练习。此外,训练营还提供了刷题建议,例如先看视频、了解自己所使用的编程语言、使用日志等方法来提高刷题效果和语言掌握程度。 训练营中的讨论内容非常丰富,涵盖了各种算法知识点和解题方法。例如,在第14天的训练营中,讲解了二叉树的理论基础、递归遍历、迭代遍历和统一遍历的内容。此外,在讨论中还分享了相关的博客文章和配图,帮助学员更好地理解和掌握二叉树的遍历方法。 训练营还提供了每日的讨论知识点,例如在第15天的讨论中,介绍了层序遍历的方法和使用队列来模拟一层一层遍历的效果。在第16天的讨论中,重点讨论了如何进行调试(debug)的方法,认为掌握调试技巧可以帮助学员更好地解决问题和写出正确的算法代码。 总之,代码随想录算法训练营是一个提供优质学习和讨论环境的平台,可以帮助学员系统地学习算法知识,并提供了丰富的讨论内容和刷题建议来提高算法编程能力。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [代码随想录算法训练营每日精华](https://blog.csdn.net/weixin_38556197/article/details/128462133)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值