目录
LeetCode123. 买卖股票的最佳时机III
链接: 链接:123. 买卖股票的最佳时机 III - 力扣(LeetCode)
1. 思路
本题相对于LeetCode121和LeetCode122难了不少;关键在于至多买卖两次,这意味着可以买卖一次,可以买卖两次,也可以不买卖。
接来下我用动态规划五部曲详细分析一下:
1.1 确定dp数组以及下标的含义
一天一共就有五个状态,
- 没有操作
- 第一次买入的状态
- 第一次卖出的状态
- 第二次买入的状态
- 第二次卖出的状态
dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金;
1.2 确定递推公式
需要注意:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区;
达到dp[i][1]状态,有两个具体操作:
- 操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
- 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]
那么dp[i][1]究竟选 dp[i-1][0] - prices[i],还是dp[i - 1][1]呢?
一定是选最大的,所以 dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);
同理dp[i][2]也有两个操作:
- 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
- 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]
所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])
同理可推出剩下状态部分:
dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
1.3 dp数组初始化
-
dp[0][0]
第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;
-
dp[0][1]
第0天做第一次买入的操作,dp[0][1] = -prices[0];
-
dp[0][2]
第0天做第一次卖出的操作,这个初始值应该是多少呢?首先卖出的操作一定是收获利润,整个股票买卖最差情况也就是没有盈利即全程无操作现金为0,从递推公式中可以看出每次是取最大值,那么既然是收获利润如果比0还小了就没有必要收获这个利润了,所以dp[0][2] = 0;(这个解释我不是很懂)我认为可以理解成第0天买入了再卖出,价格是一样的,所以为0;
-
dp[0][3]
第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?
第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后在买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。所以第二次买入操作,初始化为:dp[0][3] = -prices[0];
-
dp[0][4]