贪心法求解区间覆盖问题(20分)

题目内容:

设x1,x2,... ,xn是实直线上的n个点。用固定长度的闭区间覆盖这n个点,至少需要多少个这样的固定长度闭区间?设计求解此问题的有效算法。对于给定的实直线上的n个点和闭区间的长度k,编程计算覆盖点集的最少区间数。

输入格式:

输入数据的第一行有2个正整数n和k,表示有n个点,且固定长度闭区间的长度为k。接下来的1行中,有n个整数,表示n个点在实直线上的坐标(可能相同)。

输出格式:

将编程计算出的最少区间数输出。

输入样例:

7 3

1 2 3 4 5 -2 6

输出样例:

3

时间限制:500ms内存限制:32000kb

#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;

int main()
{
	int num, len;
	cin >> num >> len;

	vector<int>a(num);

	for (int i = 0; i < num; i++)
	{
		cin >> a[i];
	}

	vector<int>b(num);
	int flag = 0;
	vector<int>c(num);
	for (int i = 0; i < num; i++)
	{
		for (int j = 0; j <num; j++)
		{
			if (b[j] == 0)
			{
				b[j] = a[i] ;
				flag++;
				c[i] = j;
				break;
			}
			else
			{
				if (a[i] <= b[j] + len && a[i] >= b[j])
				{
					c[i] = j;
					break;
				}
			}
		}
	}
	cout << flag;
}

### 贪心算法区间覆盖问题中的应用 #### 问题描述 区间覆盖问题是计算科学领域的一个经典优化问题,其目标是在给定的一系列区间中选取尽可能少的区间来完全覆盖某个特定范围。该问题可以通过贪心算法高效求解。 #### 解决方法概述 通过析已知条件可以得出,在解决区间覆盖问题时,贪心策略的核心在于每次选择当前条件下最有利于扩展覆盖区域的区间[^1]。具体而言: - **局部最优决策**:对于每一个未被覆盖的部,总是优先选择右端点最大的那个区间作为候选者。 - **全局最优保障**:这种选择方式能确保最终选出的区间的数量达到最小化的要求,因为每一次的选择都最大化了剩余部可选空间的有效长度[^2]。 #### 实现步骤解析 以下是基于上述理论的具体实现逻辑: 1. 首先按照各区间左端点从小到大排序所有可用区间; 2. 初始化起点变量 `start` 和计数器 `count` ,别记录待覆盖起始位置以及所需区间数目; 3. 进入循环直到整个目标范围都被成功覆盖为止: - 在满足左边界小于等于当前 `start` 的前提下寻找具有最大右边界的区间; - 更新新的起点至找到的最大右侧边界的下一个单位处,并增加计数值; 4. 若无法继续延伸则判断是否存在可行解;如果存在返回总需求数目否则输出零表示无合法配置可能。 #### 示例代码展示 下面提供了一段 Python 编写的伪代码用于演示如何利用贪心法处理此类问题: ```python def min_intervals_to_cover(intervals, target_length): intervals.sort(key=lambda x:x[0]) # Sort by start point count = 0 current_end = 0 i = 0 n = len(intervals) while current_end < target_length: farthest = current_end while (i < n and intervals[i][0] <= current_end): farthest = max(farthest, intervals[i][1]) i += 1 if farthest == current_end: return 0 # No solution exists count += 1 current_end = farthest return count ``` 此函数接收两个参数——一个是代表各个独立区间的列表形式输入数据集,另一个则是期望得到的整体连续覆盖长度值target_length。它会依据前述原理逐步推进直至完成全部需求或者确认不可能达成预期效果而提前终止运算过程并反馈相应状态码即'0'[ ^2 ].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值