- 博客(531)
- 收藏
- 关注
原创 torch.isclose
返回值是一个布尔类型的张量,其中每个元素表示对应位置的两个输入张量中的元素是否接近相等。是 PyTorch 中的一个函数,用于判断两个张量中的对应元素是否接近相等。
2024-10-27 22:59:51
411
原创 BotScreen: Trust Everybody, but Cut the Aimbots Yourself
威胁模型:假设自瞄作弊器在不违反游戏规则的前提下改变目标游戏进程的输入,且可根据游戏上下文操纵键盘和鼠标输入。系统架构客户端:包括游戏引擎、TEE(受信任执行环境)、DATAMANAGER和DETECTOR。客户端之间通过网络共享游戏事件信息,DATAMANAGER将接收到的事件转换为向量化数据并进行预处理,DETECTOR使用RNN模型分析射击行为,判断是否使用自瞄作弊器,并将结果发送给服务器。服务器:收集来自客户端的检测报告,综合判断玩家是否作弊。
2024-10-27 17:15:47
846
原创 PatchEmbed
在这个示例中,我们首先定义了输入图像的大小、patch 的大小和目标嵌入维度。然后,我们创建了一个。进行处理,得到嵌入后的 patches,并打印出其形状。接着,我们模拟了一个包含。个图像的输入张量,每个图像有。最后,我们将输入图像通过。
2024-10-18 21:19:00
603
原创 操作系统课程设计题目:操作系统模拟系统
组队协作模式:每1~4人一组,自由组队,做好组内分工,每组提交一份。基本内容:设计一个允许多进程运行和管理的模拟系统,该系统应包括。法)、状态切换(包括阻塞和唤醒、挂起和激活等原语操作)、互斥、同步、通信、死锁处理、内存分配(分配回收、换入换出等)、外存访。给分原则:实现的编程语言不限定,但实现的功能越多,系统越合理完。(但不限于):进程的控制、调度(实现至少两种经典的进程调度算。结合系统的设计与实现,课程设计报告,但需在课程设计报告上明确各位成员的分工和职责。善,课程设计报告越详尽,最终得分越高!
2024-10-16 10:14:54
314
原创 temporal action localization
在现实生活中,大量的视频数据不断产生,如何有效地分析和理解这些视频内容成为了一个关键问题。Temporal Action Localization 任务对于视频内容分析、视频检索、智能监控、人机交互等领域都有着至关重要的作用。Temporal Action Localization(时间动作定位)是计算机视觉领域中一项具有挑战性的任务,主要目标是在未修剪的长视频中准确地定位动作发生的时间区间,并确定动作的类别。
2024-10-15 15:10:06
793
原创 nn.Identity()
是一个简单的模块,它的作用是在模型中作为一个占位符或者不进行任何操作的层,直接返回输入。实例,然后将一个随机生成的张量通过这个层,输出将与输入完全相同。在 PyTorch 中,在上述代码中,创建了一个。
2024-10-10 20:58:27
686
原创 RepVGG: Making VGG-style ConvNets Great Again(CVPR 2021)
(3)1x1卷积的表征能力弱于3x3卷积,因为前者可以看作一个有很多参数为0的3x3卷积,但是1x1 + 3x3的性能却好于3x3 + 3x3,一个强结构加一个弱结构大概率好于两个强结构相加。参考官方在ResNet-50/101的最后两个阶段使用Dilated Convolution,RepVGG的最后两个阶段使用Dilated Convolution。(1)推理时的等价性不代表训练时的等价性,直接训练一个 3x3 卷积最终也会得到同样形状的参数,虽然形状相同,但性能不同。
2024-10-10 14:33:58
421
原创 深度分离卷积
深度可分离卷积通过分解标准卷积,降低了计算量与参数量,是轻量级模型设计中的关键技术,特别适用于对计算资源要求较高的移动和嵌入式设备。
2024-10-09 15:36:23
815
原创 Group Convolution(组卷积)
组卷积的实现非常简单,主要通过groups参数来控制通道的分组,减少计算量和参数量,同时提高卷积层的效率。
2024-10-09 15:29:29
401
原创 SEBlock
SEBlock(Squeeze-and-Excitation Block)即压缩和激励模块,在深度学习中尤其是计算机视觉任务中被广泛应用。在实际使用中,可以将 SEBlock 插入到现有的神经网络架构中,例如在卷积层之后,以提高模型的性能。方法实现了 SEBlock 的前向传播过程,包括压缩、激励和重加权操作。方法初始化了模块的各个部分,包括全局平均池化和全连接层。这段代码定义了一个 SEBlock 类,其中。
2024-10-08 21:13:41
1456
原创 python中assert用法
语句可能会被忽略,因为优化器可能会认为断言检查是不必要的开销。所以在生产环境中,应该谨慎使用。需要注意的是,在生产环境中,如果使用了优化选项(例如。语句用于进行断言检查。,或者使用其他更可靠的错误处理机制。)运行 Python 程序,不大于 5,程序会抛出。在 Python 中,如果断言失败,会抛出。
2024-10-08 21:11:36
376
原创 ADE20K数据集
ADE20K 是一个大规模的场景解析数据集(scene parsing dataset),主要用于语义分割任务。该数据集由麻省理工学院(MIT)计算机科学与人工智能实验室(CSAIL)创建。它包含广泛的场景和物体类别,涵盖室内、室外、自然、城市、家庭等各种场景。
2024-10-05 00:06:49
1213
原创 self-supervised, weakly supervised, and supervised respectively区别
综上所述,监督学习、弱监督学习和自监督学习在数据要求、学习原理和应用场景等方面存在明显的区别。在实际应用中,可以根据具体的问题和数据情况选择合适的学习范式。
2024-09-27 19:39:10
546
原创 Fréchet Inception Distance(FID)原理
综上所述,FID 综合考虑了均值和协方差的差异,从而给出一个数值来量化生成图像的特征分布与真实图像的特征分布的相似度。较小的 FID 值表示生成图像的特征分布更接近真实图像,意味着生成模型的性能更好。FID 的核心思想是通过比较真实图像和生成图像在 Inception 模型特征空间中的分布差异,来评估生成模型的性能。它假设从真实数据和生成数据中提取的特征都近似服从高斯分布。FID 定义为两个多元高斯分布(分别由真实图像特征和生成图像特征的均值和协方差描述)之间的 Fréchet 距离。
2024-09-03 16:35:17
960
原创 gradio
Gradio 是一个开源 Python 库,旨在帮助开发者快速搭建和分享机器学习模型的用户界面(UI)。通过 Gradio,你可以将模型的输入和输出接口设计为网页应用,使其他人能够通过简单的 Web 界面与模型进行交互,无需编写复杂的前端代码。
2024-08-30 16:08:50
707
原创 torch.flatten函数中start_dim
函数的作用是将一个张量展平为一维张量或在特定维度开始展平为一个低维张量。假设我们有一个形状为。
2024-08-25 23:16:08
236
原创 iterrows()
它会生成一个迭代器,在每次迭代中返回一个包含两个元素的元组。其中,第一个元素是行索引,通常是整数索引或者标签索引;对象,代表该行的数据,其中的索引是列名,对应的值是该行在该列上的值。对象的一个方法,主要用于逐行遍历。
2024-08-23 23:35:38
1703
原创 主机字节序和网络字节序
在计算机网络通信的广袤世界里,主机字节序和网络字节序犹如两座坚实的基石,支撑着数据的准确传输与处理。今天,就让我们深入探讨这两个重要概念。主机字节序指的是在特定的计算机体系结构中,多字节数据在内存中的存储顺序。它主要分为两种类型。网络字节序是一种统一的字节序标准,在网络通信中,它规定多字节数据的存储顺序为大端字节序。许多编程语言都提供了函数来进行主机字节序和网络字节序之间的转换。主机字节序与网络字节序:网络通信中的关键概念。
2024-08-23 11:21:04
403
原创 downstream task
通常,先在大规模数据集上进行无特定任务目标的预训练,得到一个具有通用语言理解能力的模型。然后,针对具体的下游任务,如文本分类、命名实体识别、机器翻译等,利用预训练模型的参数进行微调(fine-tuning)。在深度学习中,“downstream task”(下游任务)指的是在预训练模型的基础上进行的特定任务。
2024-08-21 16:27:59
345
原创 Few-shot Learning
Few-shot learning 是一种机器学习方法,旨在从少量的样本中学习新的概念或任务。在传统的机器学习中,通常需要大量的标注数据来训练模型,以获得良好的性能。然而,在许多实际应用中,获取大量标注数据是困难、昂贵或耗时的。Few-shot learning 则试图解决这个问题,通过利用少量的样本进行学习,使模型能够快速适应新的任务或概念。
2024-08-20 22:54:16
1427
原创 NLP位置编码
在自然语言处理和深度学习中,位置编码(Position Encoding)是一种为了向模型中引入序列中元素位置信息的技术。当处理序列数据时,如文本句子或时间序列数据,模型通常需要考虑元素的顺序和位置关系。仅仅依靠原始的词向量或特征表示往往无法捕捉到位置信息,而位置编码则可以有效地将位置信息融入到模型的输入中。
2024-08-20 21:48:16
591
原创 信息瓶颈问题
信息瓶颈(Information Bottleneck)是一种源于信息论的理论框架,在多个领域中发挥着重要作用。它主要聚焦于理解和分析信息处理系统中的信息压缩与特征提取过程。:信息瓶颈方法致力于找到一种对输入数据的压缩表示方式。这种压缩表示应尽可能多地保留与特定目标变量相关的信息,同时最大限度地去除与目标变量无关的信息。通过这样的方式,能够在信息的压缩和关键信息的保留之间找到一个平衡。:信息瓶颈通过最小化一个由互信息组成的目标函数来实现其目标。设输入变量为(X),目标变量为(Y),压缩表示为(T)。
2024-08-20 21:42:41
1348
原创 N-gram 模型介绍
例如,在句子“我喜欢吃苹果”中,2-gram(也称为二元语法)有“我喜欢”“喜欢吃”“吃苹果”;3-gram(三元语法)有“我喜欢吃”“喜欢吃苹果”。N 的取值通常根据具体任务和数据来确定,常见的有 unigram(N = 1,单个词)、bigram(N = 2)和 trigram(N = 3)等。总的来说,N-gram 模型在自然语言处理等领域中有着广泛的应用,但其也存在一些局限性。N-gram 模型是一种基于统计语言模型的算法,在自然语言处理领域中有着广泛的应用。统计 N-gram 频率。
2024-08-20 12:40:52
1285
原创 clamp用法
方法通常用于对张量中的值进行范围约束,以满足特定的计算需求或保证数值的合理性。: 将张量中的所有值限制在给定的最小值和最大值之间。: 将张量中的所有值限制为不小于给定的最小值。: 将张量中的所有值限制为不大于给定的最大值。方法用于对张量的值进行限制。在 PyTorch 中,
2024-08-15 17:02:40
368
原创 杰卡德系数
例如,在文本分类任务中,如果有两个文档的词汇集合分别为。杰卡德系数是一种用于衡量两个集合相似度的重要指标。,表示这两个文档在词汇上有一定的相似性。
2024-08-15 16:44:11
1435
原创 torch.meshgrid
在很多涉及坐标操作、图像处理、构建网格数据等任务中非常有用。是 PyTorch 中的一个函数,用于创建多维网格坐标。它接受多个一维张量作为输入,并根据指定的索引模式(通过。)生成相应的多维网格张量。
2024-08-14 09:58:22
1421
原创 为什么在实践中只考虑特定的缩放比和宽高比组合
例如,如果有很多个不同的缩放比和宽高比,以每个像素为中心生成锚框,那么锚框的总数会呈几何级数增长,这将极大地增加计算量和计算时间,可能导致系统无法在合理的时间内完成处理。而只考虑特定的组合,如 `(s₁, r₁), (s₁, r₂),..., (s₁, rₘ), (s₂, r₁), (s₃, r₁),..., (sₙ, r₁)` ,能够在保证一定程度覆盖真实边界框的情况下,有效地控制锚框的生成数量,降低计算的复杂性。这样可以在保证检测效果的同时,提高计算效率,使目标检测算法在实际应用中更加可行和实用。
2024-08-14 09:39:59
293
原创 3132. Find the Integer Added to Array II
【代码】3132. Find the Integer Added to Array II。
2024-08-09 22:31:44
361
原创 3131. Find the Integer Added to Array I
【代码】3131. Find the Integer Added to Array I。
2024-08-08 22:52:49
485
原创 80. Remove Duplicates from Sorted Array II
【代码】80. Remove Duplicates from Sorted Array II。
2024-08-07 22:30:30
359
原创 3143. Maximum Points Inside the Square
【代码】3143. Maximum Points Inside the Square。
2024-08-03 08:34:01
290
原创 LCP40.心跳挑战
请帮参赛选手计算最大的有效得分。若不存在获取有效得分的卡牌方案,则返回 0。解释:选择数字为 1、8、9 的这三张卡牌,此时可获得最大的有效得分 1+8+9=18。张卡牌数字总和为偶数,则选手成绩「有效」且得分为。力扣挑战赛」心算项目的挑战比赛中,要求选手从。解释:不存在获取有效得分的卡牌方案。
2024-08-01 09:51:10
396
原创 腾讯后台开发面经
虚函数(Virtual Function)是面向对象编程(OOP)中的一个重要概念,特别是在C++等语言中。虚函数允许在基类中声明一个函数,并在派生类中对这个函数进行重写(Override),从而实现运行时多态性(Run-time Polymorphism)。综上所述,内存对齐在提高程序的性能、稳定性、可维护性和安全性等方面都发挥着重要作用。开发者在编写代码时应当意识到内存对齐的重要性,并采取适当的措施来确保数据的正确对齐。是一个操作符,用于在堆(heap)上动态地分配内存并初始化对象。
2024-06-25 00:15:10
671
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人