OpenCV的查找命中或未命中(41)

79 篇文章 0 订阅
78 篇文章 0 订阅
本文介绍了如何在OpenCV中利用Hit-or-Miss变换在二进制图像中查找特定模式,通过erosions,expansions和结构元素组合来实现这一高级形态操作。提供了C++、Java和Python代码示例。
摘要由CSDN通过智能技术生成

返回:OpenCV系列文章目录(持续更新中......)

上一篇:OpenCV4.9更多形态转换(40)

下一篇:OpenCV4.10使用形态运算提取水平线和垂直线(42)

目标

在本教程中,您将学习如何使用 Hit-or-Miss 转换(也称为 Hit-and-Miss 转换)在二进制映像中查找给定配置或模式。这种变换也是更高级的形态操作(如疏伐或修剪)的基础。

我们将使用OpenCV函数 morphologyEx() .

命中或未命中理论

形态学运算符根据图像的形状处理图像。这些运算符将一个或多个结构化元素应用于输入图像以获取输出图像。两种基本的形态操作是侵蚀扩张。这两种操作的组合会产生高级形态转换,例如打开关闭顶帽转换。要了解有关这些和其他基本形态操作的更多信息,请参阅前面的教程(侵蚀和扩张)和(更多形态转换)。

命中或未命中变换对于查找二进制图像中的模式非常有用。特别是,它找到那些邻域与第一个结构元素B1的形状匹配,但同时与第二个结构元素 B2 的形状不匹配的像素。从数学上讲,应用于图像A的运算可以表示如下:

因此,命中或未命中操作包括三个步骤:

  1. 使用结构元素B1侵蚀图像 A。
  2. 侵蚀图像A(AC)的补码与结构元素(B2)。
  3. AND 来自步骤 1 和步骤 2。

结构元素 B1和 B2 可以组合成一个元素B。让我们看一个例子:

在本例中,我们正在寻找一种模式,其中中心像素属于背景,而北、南、东、西像素属于前景。附近的其余像素可以是任何类型的,我们不关心它们。现在,让我们将此内核应用于输入图像:

您可以看到该图案仅在图像中的一个位置找到。

代码

与上一个示例对应的代码如下所示。

您也可以从这里下载

C++:

#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp> 
using namespace cv; 
int main(){
 Mat input_image = (Mat_<uchar>(8, 8) <<
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 255, 255, 255, 0, 0, 0, 255,
 0, 255, 255, 255, 0, 0, 0, 0,
 0, 255, 255, 255, 0, 255, 0, 0,
 0, 0, 255, 0, 0, 0, 0, 0,
 0, 0, 255, 0, 0, 255, 255, 0,
 0, 255, 0, 255, 0, 0, 255, 0,
 0, 255, 255, 255, 0, 0, 0, 0); 
 Mat kernel = (Mat_<int>(3, 3) <<
 0, 1, 0,
 1, -1, 1,
 0, 1, 0); 
 Mat output_image;
 morphologyEx(input_image, output_image, MORPH_HITMISS, kernel); 
 const int rate = 50;
 kernel = (kernel + 1) * 127;
 kernel.convertTo(kernel, CV_8U); 
 resize(kernel, kernel, Size(), rate, rate, INTER_NEAREST);
 imshow("kernel", kernel);
 moveWindow("kernel", 0, 0); 
 resize(input_image, input_image, Size(), rate, rate, INTER_NEAREST);
 imshow("Original", input_image);
 moveWindow("Original", 0, 200); 
 resize(output_image, output_image, Size(), rate, rate, INTER_NEAREST);
 imshow("Hit or Miss", output_image);
 moveWindow("Hit or Miss", 500, 200); 
 waitKey(0);
 return 0;
}

Java:

import org.opencv.core.*;
import org.opencv.highgui.HighGui;
import org.opencv.imgproc.Imgproc;
 
class HitMissRun{
 
 public void run() {
 Mat input_image = new Mat( 8, 8, CvType.CV_8UC1 );
 int row = 0, col = 0;
 input_image.put(row ,col,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 255, 255, 255, 0, 0, 0, 255,
 0, 255, 255, 255, 0, 0, 0, 0,
 0, 255, 255, 255, 0, 255, 0, 0,
 0, 0, 255, 0, 0, 0, 0, 0,
 0, 0, 255, 0, 0, 255, 255, 0,
 0, 255, 0, 255, 0, 0, 255, 0,
 0, 255, 255, 255, 0, 0, 0, 0);
 
 Mat kernel = new Mat( 3, 3, CvType.CV_16S );
 kernel.put(row ,col,
 0, 1, 0,
 1, -1, 1,
 0, 1, 0 );
 
 Mat output_image = new Mat();
 Imgproc.morphologyEx(input_image, output_image, Imgproc.MORPH_HITMISS, kernel);
 
 int rate = 50;
 Core.add(kernel, new Scalar(1), kernel);
 Core.multiply(kernel, new Scalar(127), kernel);
 kernel.convertTo(kernel, CvType.CV_8U);
 
 Imgproc.resize(kernel, kernel, new Size(), rate, rate, Imgproc.INTER_NEAREST);
 HighGui.imshow("kernel", kernel);
 HighGui.moveWindow("kernel", 0, 0);
 
 Imgproc.resize(input_image, input_image, new Size(), rate, rate, Imgproc.INTER_NEAREST);
 HighGui.imshow("Original", input_image);
 HighGui.moveWindow("Original", 0, 200);
 
 Imgproc.resize(output_image, output_image, new Size(), rate, rate, Imgproc.INTER_NEAREST);
 HighGui.imshow("Hit or Miss", output_image);
 HighGui.moveWindow("Hit or Miss", 500, 200);
 
 HighGui.waitKey(0);
 System.exit(0);
 }
}
 
public class HitMiss
{
 public static void main(String[] args) {
 // load the native OpenCV library
 System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
 new HitMissRun().run();
 }
}

 Python:

import cv2 as cv
import numpy as np
 
input_image = np.array((
 [0, 0, 0, 0, 0, 0, 0, 0],
 [0, 255, 255, 255, 0, 0, 0, 255],
 [0, 255, 255, 255, 0, 0, 0, 0],
 [0, 255, 255, 255, 0, 255, 0, 0],
 [0, 0, 255, 0, 0, 0, 0, 0],
 [0, 0, 255, 0, 0, 255, 255, 0],
 [0,255, 0, 255, 0, 0, 255, 0],
 [0, 255, 255, 255, 0, 0, 0, 0]), dtype="uint8")
 
kernel = np.array((
 [0, 1, 0],
 [1, -1, 1],
 [0, 1, 0]), dtype="int")
 
output_image = cv.morphologyEx(input_image, cv.MORPH_HITMISS, kernel)
 
rate = 50
kernel = (kernel + 1) * 127
kernel = np.uint8(kernel)
 
kernel = cv.resize(kernel, None, fx = rate, fy = rate, interpolation = cv.INTER_NEAREST)
cv.imshow("kernel", kernel)
cv.moveWindow("kernel", 0, 0)
 
input_image = cv.resize(input_image, None, fx = rate, fy = rate, interpolation = cv.INTER_NEAREST)
cv.imshow("Original", input_image)
cv.moveWindow("Original", 0, 200)
 
output_image = cv.resize(output_image, None , fx = rate, fy = rate, interpolation = cv.INTER_NEAREST)
cv.imshow("Hit or Miss", output_image)
cv.moveWindow("Hit or Miss", 500, 200)
 
cv.waitKey(0)
cv.destroyAllWindows()

正如你所看到的,它就像使用函数morphologyEx()和操作类型MORPH_HITMISS和所选的内核一样简单。

其他例子

在这里,您可以找到将不同内核应用于之前使用的同一输入图像的输出结果:

现在试试你自己的模式吧!

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

愚梦者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值