- 博客(1610)
- 收藏
- 关注
原创 36w年薪!零基础也能做的AI大模型训练师,普通人的风口机会来了
据央广网12月17日消息,腾讯升级了大模型研发架构,新成立了AI Infra部、AI Data部、数据计算平台部三个部门,明摆着是要在AI赛道全力加码,强化自己的核心能力。
2025-12-23 10:24:10
362
原创 别再造Agent了!关于Agent Skills的详细总结来了
Agent Skills 到底是什么?它与 MCP 有何本质区别?两者是竞争关系还是互补关系?本章将深入探讨这些问题。
2025-12-23 10:22:57
601
原创 面试官问:今年大模型应用开发招聘到底看什么?
今天这篇文章不讲教科书内容,不讲抽象的未来,我们来看现实:需要什么人、什么能力、为什么大多数人的准备方向完全错了。
2025-12-23 10:20:56
259
原创 大厂行情变了,差别真的挺大。。。
2025年的技术圈有点魔幻。 Java岗收紧、测试岗合并、算法岗被压缩, 很多老同学跟我说: “今年简历投出去几十份,都没几个面试。”
2025-12-23 10:18:41
568
原创 2025最全AI Agent零基础教程,从入门到精通就看这一篇
通过理论学习与实践操作相结合的方式,能够帮助学习者快速掌握AI Agent的核心技能,并将其有效运用到实际工作中,实现工作效率的显著提升与工作质量的优化升级!
2025-12-22 10:46:19
610
原创 RAG实践指南:一文搞定大模型RAG过程
RAG(Retrieval-Augmented Generation,检索增强生成), 一种AI框架,将传统的信息检索系统(例如数据库)的优势与生成式大语言模型(LLM)的功能结合在一起。
2025-12-22 10:45:34
488
原创 350页pdf!大模型基础教材发布,开源
今天给大家推荐一本由中国人民大学AI Box团队倾力编写的 《大语言模型》中文权威教材,帮你一口气打通LLM学习的“任督二脉”!
2025-12-22 10:44:39
481
原创 一文详解AI大模型14个核心基础概念:Transformer、Token、MoE、RAG、对齐、预训练、微调、Agent
本文将系统梳理AI大模型领域的14个核心概念,从基础架构到训练优化,再到前沿应用模式,帮助读者建立对这一复杂技术的全面认知框架。通过深入浅出的解释,读者将理解大模型为何能实现"智能涌现",以及如何解决其幻觉、对齐等关键挑战。
2025-12-22 10:43:40
554
原创 从新手到高手:全面解析 AI 时代的「魔法咒语」——Prompt
掌握其核心技巧,无需升级模型,读完本文之后,相信你与AI 沟通的效率会有质的提升。本章还会针对典型问题,从多维度给出可落地的解决方案。
2025-12-22 10:42:32
673
原创 AIAgent开发框架哪家强?主流Agent框架盘点
LangGraph 为长时间运行的有状态工作流或智能体提供底层支撑基础设施。不抽象提示词或架构(无预设提示词模板,控制权交还开发者),有核心优势。
2025-12-20 14:34:16
939
原创 白话大模型与知识库的基础原理(不费脑版)
参数量是大模型的一个关键指标,决定了模型的复杂度、表现力和计算需求。简单来说,参数量就像是模型的大脑神经元,包含了模型在训练过程中沉淀形成的所有知识信息。
2025-12-20 14:33:38
899
原创 AI 技术中的 RAG、知识库与 Embedding
今天,我们就一起来了解下 AI 技术中 RAG、知识库和 Embedding 这三门技术的使用背景和技术原理。
2025-12-20 14:32:40
845
原创 大模型入门“顶流教程”,Happy-LLM轻松攻克大模型
开源仅一周,《Happy-LLM》从零开始的大语言模型原理与实践教程 GitHub star数量已经突破2.3k,成为大模型学习圈的“顶流教程”!
2025-12-19 10:47:06
760
原创 别再“邪修”Prompt了!向Claude团队学习如何构建提示词
提示词(Promt)是我们和大语言模型(LLM)沟通的方式,有效的提示词工程能明显提升模型输出的质量。
2025-12-19 10:46:06
460
原创 小白6个月速成:大模型学习实战攻略
这是一个为小白设计的、为期6个月的大模型学习计划。这个计划注重循序渐进,强调基础先行,再逐步深入核心概念和实践。
2025-12-19 10:45:13
875
原创 给小白看的LLM科普:从“鹦鹉学舌”到“举一反三”,AI的大脑到底发生了什么?
今天的文章,咱们不整复杂的公式,专门来啃最难啃的那块骨头:一个只会“猜下一个字”的程序,到底是在哪一个瞬间,突然学会了像人类一样思考逻辑的? 🧠
2025-12-19 10:44:30
672
原创 30天快速入门AI大模型:从理论到实践的详细学习方案
本文将为你提供一个雄心勃勃但完全可行的计划:在一个月内,快速建立对AI大模型的系统性认知,并具备动手实践和应用开发的能力。
2025-12-19 10:43:59
828
原创 大模型3年工作经验,为何不如校招的一张白纸?
今天这篇,咱们不灌鸡汤,只聊那个残酷的真相:在2025年的大模型基座战争中,为什么社招“经验”贬值了,而校招“潜力”成为了唯一的硬通货。
2025-12-18 10:52:50
611
原创 报告 | 《RAG实践手册 构建知识库和问答系统的实战指南》(免费下载PDF版本)
手册详细介绍了千问和Gemini模型的集成方法,包括API接入、提示词工程和参数调优。提示词结构根据语言分支(中英文)动态构建,结合检索上下文和对话历史,确保回答相关性和连贯性。
2025-12-18 10:52:02
849
原创 谷歌发布40页AI Agent白皮书,简单易懂的智能体认知架构
随着AI Agent市场的越发火爆,为了让用户全面了解AI Agent并积极参与生态构建,一些公司相继推出了官方智能体相关的解读及白皮书。
2025-12-18 10:51:18
1129
原创 搭建你的第一个“私有知识库” (RAG)
最近 AI 圈子里最火的技术莫过于 RAG (检索增强生成)。简单说,就是给大模型“外挂”一个你的私人资料库,让它能回答你公司内部文档、个人笔记里的问题。
2025-12-18 10:48:43
971
原创 检索增强生成(RAG)与大语言模型微调(Fine-tuning)的差异、优势及使用场景详解
微调大语言模型是利用特定任务或领域的定制数据集,对预训练模型进行调整;而检索增强生成(RAG)则将检索系统与生成模型相结合,动态地将外部的、最新的知识融入生成结果中。
2025-12-17 10:29:10
373
原创 爆改RAG!用强化学习让你的检索增强生成系统“开挂”——从小白到王者的实战指南
今天这篇文章,我们就来一场RAG+RL的实战炼丹,用风趣幽默、通俗易懂的方式,带你从0到1撸出一个能自我进化的RAG系统。不卷代码,主讲思路,伪代码穿插,爆款干货,保证你看完就能吹牛!
2025-12-17 10:28:30
345
原创 【斯坦福大学】从0开始,手搓大模型,附:代码+课件
斯坦福大学 2025 年春季的 CS336 课程「从头开始创造语言模型(Language Models from Scratch)」相关课程和材料现已在网上全面发布!
2025-12-17 10:27:50
400
原创 从零搭建一套完整的 RAG 系统:手把手教你玩转检索增强生成
我们不会堆砌过多碎片化的 bullet points,而是像一章真正的教材一样,循序渐进地讲清楚每一步为什么这么做、能解决什么问题,并配上可直接运行的代码示例。
2025-12-17 10:26:55
334
原创 8K star!从0开始,动手训练一个大语言模型
今天我们要分享的开源项目,它就希望可以带领你从头开始,在0基础的情况下,亲自动手来训练一个微型的大语言模型,让你从实践中获得真知,它就是:MiniMind
2025-12-17 10:26:17
715
原创 吴恩达和OpenAI联合推出《LLM入门手册》超全PDF!看完普通人也能手搓AI
吴恩达老师与 OpenAI 合作推出的《LLM大模型通关课程手册》从大模型时代开发者的基础技能出发,深入浅出地介绍了如何基于大模型 API、LangChain 架构快速开发结合大模型强大能力的应用。
2025-12-16 10:09:10
897
原创 几乎是跪着看完AI教母李飞飞的巨作!如果你agent ai很差,一定要看
随着大型语言模型(LLM)和视觉语言模型(VLM)的飞速发展,人工智能领域正经历着从处理被动、结构化任务到扮演动态、智能体角色的重大范式转变。
2025-12-16 10:08:38
783
原创 轻量化视觉大模型实战:TinyMind(90M)从训练到端侧部署的完整教程
本文将详细记录这一过程中的技术方案、实现细节和踩坑经验。如果这些内容能对正在探索轻量化多模态模型的开发者有所启发,那将是我最大的欣慰。
2025-12-16 10:07:48
754
原创 瞬间对大模型的兴趣达到100000000000%,太香了!
本书旨在帮助读者了解提示工程的应用场景和实践案例,无论您是技术领域的专业人士,还是对新兴技术充满好奇心的读者,希望本书能激发您的思考,并为您展示一个崭新的创作世界。
2025-12-16 10:06:41
531
原创 利用腾讯混元大模型搭建Cherry Studio自有知识库,打造“智能第二大脑”
Cherry Studio 的定位:作为一个轻量化的知识管理与 AI 助手平台,Cherry Studio 需要一个高效、可扩展的知识库来支撑日常问答、文档检索和自动化工作流。
2025-12-15 10:06:49
842
原创 11.5k star!大道至简:从0开始3块钱打造25.8M超轻量AI语言模型
MiniMind不仅是一个轻量级语言模型的实现,更是一个展示AI技术本质的项目。它用最简单的方式,让每个对AI感兴趣的人都能亲手搭建一个语言模型,理解其中的原理。
2025-12-15 10:05:31
957
原创 掌握AI语言新力量:大型语言模型实战指南
今天,小编要隆重推荐一本让你真正玩转LLM的实战宝典——《Hands-On Large Language Models》!
2025-12-15 10:04:35
939
原创 Llama3 92页技术报告中文全文详解,大模型入门到精通,收藏这篇就足够了!
这份报告对于大模型领域的研究者和从业者来说,无疑是一份宝贵的学习资料。我们已将报告全文翻译为中文,以方便大家阅读。
2025-12-15 10:03:54
1078
原创 如何系统学习 AI Agent?一篇文章带你走通全流程(附学习路径 & 资料推荐)
AI Agent(智能体)成为最火的技术方向之一。从大模型原生 Agents,到自动化工作流、企业级数字员工,再到开源社区里层出不穷的应用,几乎所有人都在谈:未来不是 App,而是 Agents。
2025-12-15 10:01:50
940
原创 大模型RAG入门到实战基础教程(非常详细)
本文列举了LLM的问题。简单介绍了什么是 RAG ,以及 RAG 的流程。最后使用了一个简单的LangChain代码示例来展示 RAG 的使用。最后对比了 RAG 和微调的区别,方便大家选型。
2025-12-14 10:00:00
970
原创 检索+生成:RAG技术的核心机制及其应用流程解析
RAG是一个强大的功能,能够提高语义搜索效率。它让大语言模型(LLM)在回答问题前,先从外部知识库中检索相关信息,再基于检索结果生成更准确、可靠的回答。
2025-12-13 10:00:00
1588
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅